ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubg4m GIF version

Theorem issubg4m 13323
Description: A subgroup is an inhabited subset of the group closed under subtraction. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypotheses
Ref Expression
issubg4.b 𝐵 = (Base‘𝐺)
issubg4.p = (-g𝐺)
Assertion
Ref Expression
issubg4m (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑦,𝑤,𝐵   𝑥,𝐺,𝑦,𝑤   𝑥, ,𝑦   𝑥,𝑆,𝑦,𝑤
Allowed substitution hint:   (𝑤)

Proof of Theorem issubg4m
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 issubg4.b . . . 4 𝐵 = (Base‘𝐺)
21subgss 13304 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
3 eqid 2196 . . . . 5 (0g𝐺) = (0g𝐺)
43subg0cl 13312 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
5 elex2 2779 . . . 4 ((0g𝐺) ∈ 𝑆 → ∃𝑤 𝑤𝑆)
64, 5syl 14 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ∃𝑤 𝑤𝑆)
7 issubg4.p . . . . . 6 = (-g𝐺)
87subgsubcl 13315 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥 𝑦) ∈ 𝑆)
983expb 1206 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 𝑦) ∈ 𝑆)
109ralrimivva 2579 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
112, 6, 103jca 1179 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆))
12 simplrl 535 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → 𝑆𝐵)
13 simplrr 536 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∃𝑤 𝑤𝑆)
14 oveq1 5929 . . . . . . . . . . . . 13 (𝑥 = (0g𝐺) → (𝑥 𝑦) = ((0g𝐺) 𝑦))
1514eleq1d 2265 . . . . . . . . . . . 12 (𝑥 = (0g𝐺) → ((𝑥 𝑦) ∈ 𝑆 ↔ ((0g𝐺) 𝑦) ∈ 𝑆))
1615ralbidv 2497 . . . . . . . . . . 11 (𝑥 = (0g𝐺) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆))
17 simpr 110 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
18 simprr 531 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) → ∃𝑤 𝑤𝑆)
19 r19.2m 3537 . . . . . . . . . . . . 13 ((∃𝑤 𝑤𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
2018, 19sylan 283 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
21 oveq2 5930 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → (𝑥 𝑦) = (𝑥 𝑥))
2221eleq1d 2265 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → ((𝑥 𝑦) ∈ 𝑆 ↔ (𝑥 𝑥) ∈ 𝑆))
2322rspcv 2864 . . . . . . . . . . . . . . . 16 (𝑥𝑆 → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 𝑥) ∈ 𝑆))
2423adantl 277 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 𝑥) ∈ 𝑆))
25 simprl 529 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) → 𝑆𝐵)
2625sselda 3183 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑥𝑆) → 𝑥𝐵)
271, 3, 7grpsubid 13216 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑥 𝑥) = (0g𝐺))
2827adantlr 477 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑥𝐵) → (𝑥 𝑥) = (0g𝐺))
2926, 28syldan 282 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑥𝑆) → (𝑥 𝑥) = (0g𝐺))
3029eleq1d 2265 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑥𝑆) → ((𝑥 𝑥) ∈ 𝑆 ↔ (0g𝐺) ∈ 𝑆))
3124, 30sylibd 149 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (0g𝐺) ∈ 𝑆))
3231rexlimdva 2614 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) → (∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (0g𝐺) ∈ 𝑆))
3332imp 124 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (0g𝐺) ∈ 𝑆)
3420, 33syldan 282 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (0g𝐺) ∈ 𝑆)
3516, 17, 34rspcdva 2873 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆)
361, 3grpidcl 13161 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
3736ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑦𝑆) → (0g𝐺) ∈ 𝐵)
3825sselda 3183 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑦𝑆) → 𝑦𝐵)
39 eqid 2196 . . . . . . . . . . . . . . . 16 (+g𝐺) = (+g𝐺)
40 eqid 2196 . . . . . . . . . . . . . . . 16 (invg𝐺) = (invg𝐺)
411, 39, 40, 7grpsubval 13178 . . . . . . . . . . . . . . 15 (((0g𝐺) ∈ 𝐵𝑦𝐵) → ((0g𝐺) 𝑦) = ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)))
4237, 38, 41syl2anc 411 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑦𝑆) → ((0g𝐺) 𝑦) = ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)))
43 simpll 527 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑦𝑆) → 𝐺 ∈ Grp)
441, 40grpinvcl 13180 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
4543, 38, 44syl2anc 411 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑦𝑆) → ((invg𝐺)‘𝑦) ∈ 𝐵)
461, 39, 3grplid 13163 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑦) ∈ 𝐵) → ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)) = ((invg𝐺)‘𝑦))
4743, 45, 46syl2anc 411 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑦𝑆) → ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)) = ((invg𝐺)‘𝑦))
4842, 47eqtrd 2229 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑦𝑆) → ((0g𝐺) 𝑦) = ((invg𝐺)‘𝑦))
4948eleq1d 2265 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑦𝑆) → (((0g𝐺) 𝑦) ∈ 𝑆 ↔ ((invg𝐺)‘𝑦) ∈ 𝑆))
5049ralbidva 2493 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) → (∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆))
5150adantr 276 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆))
5235, 51mpbid 147 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆)
53 fveq2 5558 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → ((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑧))
5453eleq1d 2265 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (((invg𝐺)‘𝑦) ∈ 𝑆 ↔ ((invg𝐺)‘𝑧) ∈ 𝑆))
5554rspccva 2867 . . . . . . . . . . . . . . . 16 ((∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆𝑧𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑆)
5655ad2ant2l 508 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → ((invg𝐺)‘𝑧) ∈ 𝑆)
57 oveq2 5930 . . . . . . . . . . . . . . . . 17 (𝑦 = ((invg𝐺)‘𝑧) → (𝑥 𝑦) = (𝑥 ((invg𝐺)‘𝑧)))
5857eleq1d 2265 . . . . . . . . . . . . . . . 16 (𝑦 = ((invg𝐺)‘𝑧) → ((𝑥 𝑦) ∈ 𝑆 ↔ (𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆))
5958rspcv 2864 . . . . . . . . . . . . . . 15 (((invg𝐺)‘𝑧) ∈ 𝑆 → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆))
6056, 59syl 14 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆))
61 simplll 533 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝐺 ∈ Grp)
6226ad2ant2r 509 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑥𝐵)
6325ad2antrr 488 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑆𝐵)
64 simprr 531 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧𝑆)
6563, 64sseldd 3184 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧𝐵)
661, 39, 7, 40, 61, 62, 65grpsubinv 13205 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 ((invg𝐺)‘𝑧)) = (𝑥(+g𝐺)𝑧))
6766eleq1d 2265 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → ((𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆 ↔ (𝑥(+g𝐺)𝑧) ∈ 𝑆))
6860, 67sylibd 149 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥(+g𝐺)𝑧) ∈ 𝑆))
6968anassrs 400 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ 𝑥𝑆) ∧ 𝑧𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7069ralrimdva 2577 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → ∀𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7170ralimdva 2564 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → ∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7271impancom 260 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆 → ∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7352, 72mpd 13 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆)
74 oveq1 5929 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥(+g𝐺)𝑧) = (𝑦(+g𝐺)𝑧))
7574eleq1d 2265 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥(+g𝐺)𝑧) ∈ 𝑆 ↔ (𝑦(+g𝐺)𝑧) ∈ 𝑆))
7675ralbidv 2497 . . . . . . . . 9 (𝑥 = 𝑦 → (∀𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆 ↔ ∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆))
7776cbvralvw 2733 . . . . . . . 8 (∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆 ↔ ∀𝑦𝑆𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆)
7873, 77sylib 122 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆)
79 r19.26 2623 . . . . . . 7 (∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆) ↔ (∀𝑦𝑆𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆))
8078, 52, 79sylanbrc 417 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))
8112, 13, 803jca 1179 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆)))
8281exp42 371 . . . 4 (𝐺 ∈ Grp → (𝑆𝐵 → (∃𝑤 𝑤𝑆 → (∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))))))
83823impd 1223 . . 3 (𝐺 ∈ Grp → ((𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))))
841, 39, 40issubg2m 13319 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))))
8583, 84sylibrd 169 . 2 (𝐺 ∈ Grp → ((𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)))
8611, 85impbid2 143 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  wss 3157  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  0gc0g 12927  Grpcgrp 13132  invgcminusg 13133  -gcsg 13134  SubGrpcsubg 13297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-subg 13300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator