ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubg4m GIF version

Theorem issubg4m 13059
Description: A subgroup is an inhabited subset of the group closed under subtraction. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypotheses
Ref Expression
issubg4.b 𝐵 = (Base‘𝐺)
issubg4.p = (-g𝐺)
Assertion
Ref Expression
issubg4m (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑦,𝑤,𝐵   𝑥,𝐺,𝑦,𝑤   𝑥, ,𝑦   𝑥,𝑆,𝑦,𝑤
Allowed substitution hint:   (𝑤)

Proof of Theorem issubg4m
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 issubg4.b . . . 4 𝐵 = (Base‘𝐺)
21subgss 13040 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
3 eqid 2177 . . . . 5 (0g𝐺) = (0g𝐺)
43subg0cl 13048 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
5 elex2 2755 . . . 4 ((0g𝐺) ∈ 𝑆 → ∃𝑤 𝑤𝑆)
64, 5syl 14 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ∃𝑤 𝑤𝑆)
7 issubg4.p . . . . . 6 = (-g𝐺)
87subgsubcl 13051 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥 𝑦) ∈ 𝑆)
983expb 1204 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 𝑦) ∈ 𝑆)
109ralrimivva 2559 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
112, 6, 103jca 1177 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆))
12 simplrl 535 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → 𝑆𝐵)
13 simplrr 536 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∃𝑤 𝑤𝑆)
14 oveq1 5885 . . . . . . . . . . . . 13 (𝑥 = (0g𝐺) → (𝑥 𝑦) = ((0g𝐺) 𝑦))
1514eleq1d 2246 . . . . . . . . . . . 12 (𝑥 = (0g𝐺) → ((𝑥 𝑦) ∈ 𝑆 ↔ ((0g𝐺) 𝑦) ∈ 𝑆))
1615ralbidv 2477 . . . . . . . . . . 11 (𝑥 = (0g𝐺) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆))
17 simpr 110 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
18 simprr 531 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) → ∃𝑤 𝑤𝑆)
19 r19.2m 3511 . . . . . . . . . . . . 13 ((∃𝑤 𝑤𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
2018, 19sylan 283 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
21 oveq2 5886 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → (𝑥 𝑦) = (𝑥 𝑥))
2221eleq1d 2246 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → ((𝑥 𝑦) ∈ 𝑆 ↔ (𝑥 𝑥) ∈ 𝑆))
2322rspcv 2839 . . . . . . . . . . . . . . . 16 (𝑥𝑆 → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 𝑥) ∈ 𝑆))
2423adantl 277 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 𝑥) ∈ 𝑆))
25 simprl 529 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) → 𝑆𝐵)
2625sselda 3157 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑥𝑆) → 𝑥𝐵)
271, 3, 7grpsubid 12960 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑥 𝑥) = (0g𝐺))
2827adantlr 477 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑥𝐵) → (𝑥 𝑥) = (0g𝐺))
2926, 28syldan 282 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑥𝑆) → (𝑥 𝑥) = (0g𝐺))
3029eleq1d 2246 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑥𝑆) → ((𝑥 𝑥) ∈ 𝑆 ↔ (0g𝐺) ∈ 𝑆))
3124, 30sylibd 149 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (0g𝐺) ∈ 𝑆))
3231rexlimdva 2594 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) → (∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (0g𝐺) ∈ 𝑆))
3332imp 124 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (0g𝐺) ∈ 𝑆)
3420, 33syldan 282 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (0g𝐺) ∈ 𝑆)
3516, 17, 34rspcdva 2848 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆)
361, 3grpidcl 12910 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
3736ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑦𝑆) → (0g𝐺) ∈ 𝐵)
3825sselda 3157 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑦𝑆) → 𝑦𝐵)
39 eqid 2177 . . . . . . . . . . . . . . . 16 (+g𝐺) = (+g𝐺)
40 eqid 2177 . . . . . . . . . . . . . . . 16 (invg𝐺) = (invg𝐺)
411, 39, 40, 7grpsubval 12925 . . . . . . . . . . . . . . 15 (((0g𝐺) ∈ 𝐵𝑦𝐵) → ((0g𝐺) 𝑦) = ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)))
4237, 38, 41syl2anc 411 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑦𝑆) → ((0g𝐺) 𝑦) = ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)))
43 simpll 527 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑦𝑆) → 𝐺 ∈ Grp)
441, 40grpinvcl 12927 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
4543, 38, 44syl2anc 411 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑦𝑆) → ((invg𝐺)‘𝑦) ∈ 𝐵)
461, 39, 3grplid 12912 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑦) ∈ 𝐵) → ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)) = ((invg𝐺)‘𝑦))
4743, 45, 46syl2anc 411 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑦𝑆) → ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)) = ((invg𝐺)‘𝑦))
4842, 47eqtrd 2210 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑦𝑆) → ((0g𝐺) 𝑦) = ((invg𝐺)‘𝑦))
4948eleq1d 2246 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ 𝑦𝑆) → (((0g𝐺) 𝑦) ∈ 𝑆 ↔ ((invg𝐺)‘𝑦) ∈ 𝑆))
5049ralbidva 2473 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) → (∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆))
5150adantr 276 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆))
5235, 51mpbid 147 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆)
53 fveq2 5517 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → ((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑧))
5453eleq1d 2246 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (((invg𝐺)‘𝑦) ∈ 𝑆 ↔ ((invg𝐺)‘𝑧) ∈ 𝑆))
5554rspccva 2842 . . . . . . . . . . . . . . . 16 ((∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆𝑧𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑆)
5655ad2ant2l 508 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → ((invg𝐺)‘𝑧) ∈ 𝑆)
57 oveq2 5886 . . . . . . . . . . . . . . . . 17 (𝑦 = ((invg𝐺)‘𝑧) → (𝑥 𝑦) = (𝑥 ((invg𝐺)‘𝑧)))
5857eleq1d 2246 . . . . . . . . . . . . . . . 16 (𝑦 = ((invg𝐺)‘𝑧) → ((𝑥 𝑦) ∈ 𝑆 ↔ (𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆))
5958rspcv 2839 . . . . . . . . . . . . . . 15 (((invg𝐺)‘𝑧) ∈ 𝑆 → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆))
6056, 59syl 14 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆))
61 simplll 533 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝐺 ∈ Grp)
6226ad2ant2r 509 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑥𝐵)
6325ad2antrr 488 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑆𝐵)
64 simprr 531 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧𝑆)
6563, 64sseldd 3158 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧𝐵)
661, 39, 7, 40, 61, 62, 65grpsubinv 12949 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 ((invg𝐺)‘𝑧)) = (𝑥(+g𝐺)𝑧))
6766eleq1d 2246 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → ((𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆 ↔ (𝑥(+g𝐺)𝑧) ∈ 𝑆))
6860, 67sylibd 149 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥(+g𝐺)𝑧) ∈ 𝑆))
6968anassrs 400 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ 𝑥𝑆) ∧ 𝑧𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7069ralrimdva 2557 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → ∀𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7170ralimdva 2544 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → ∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7271impancom 260 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆 → ∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7352, 72mpd 13 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆)
74 oveq1 5885 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥(+g𝐺)𝑧) = (𝑦(+g𝐺)𝑧))
7574eleq1d 2246 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥(+g𝐺)𝑧) ∈ 𝑆 ↔ (𝑦(+g𝐺)𝑧) ∈ 𝑆))
7675ralbidv 2477 . . . . . . . . 9 (𝑥 = 𝑦 → (∀𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆 ↔ ∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆))
7776cbvralvw 2709 . . . . . . . 8 (∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆 ↔ ∀𝑦𝑆𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆)
7873, 77sylib 122 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆)
79 r19.26 2603 . . . . . . 7 (∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆) ↔ (∀𝑦𝑆𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆))
8078, 52, 79sylanbrc 417 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))
8112, 13, 803jca 1177 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆)))
8281exp42 371 . . . 4 (𝐺 ∈ Grp → (𝑆𝐵 → (∃𝑤 𝑤𝑆 → (∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))))))
83823impd 1221 . . 3 (𝐺 ∈ Grp → ((𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))))
841, 39, 40issubg2m 13055 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))))
8583, 84sylibrd 169 . 2 (𝐺 ∈ Grp → ((𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)))
8611, 85impbid2 143 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wex 1492  wcel 2148  wral 2455  wrex 2456  wss 3131  cfv 5218  (class class class)co 5878  Basecbs 12465  +gcplusg 12539  0gc0g 12711  Grpcgrp 12883  invgcminusg 12884  -gcsg 12885  SubGrpcsubg 13033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-pre-ltirr 7926  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-pnf 7997  df-mnf 7998  df-ltxr 8000  df-inn 8923  df-2 8981  df-ndx 12468  df-slot 12469  df-base 12471  df-sets 12472  df-iress 12473  df-plusg 12552  df-0g 12713  df-mgm 12781  df-sgrp 12814  df-mnd 12824  df-grp 12886  df-minusg 12887  df-sbg 12888  df-subg 13036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator