ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupssdc GIF version

Theorem zsupssdc 11854
Description: An inhabited decidable bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-suploc 7856.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.)
Hypotheses
Ref Expression
zsupssdc.a (𝜑𝐴 ⊆ ℤ)
zsupssdc.m (𝜑 → ∃𝑥 𝑥𝐴)
zsupssdc.dc (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
zsupssdc.ub (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
Assertion
Ref Expression
zsupssdc (𝜑 → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐵(𝑦,𝑧)

Proof of Theorem zsupssdc
Dummy variables 𝑎 𝑚 𝑛 𝑤 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsupssdc.ub . . 3 (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
2 breq1 3970 . . . . . 6 (𝑦 = 𝑚 → (𝑦𝑥𝑚𝑥))
32cbvralvw 2684 . . . . 5 (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑚𝐴 𝑚𝑥)
4 breq2 3971 . . . . . 6 (𝑥 = 𝑛 → (𝑚𝑥𝑚𝑛))
54ralbidv 2457 . . . . 5 (𝑥 = 𝑛 → (∀𝑚𝐴 𝑚𝑥 ↔ ∀𝑚𝐴 𝑚𝑛))
63, 5syl5bb 191 . . . 4 (𝑥 = 𝑛 → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑚𝐴 𝑚𝑛))
76cbvrexvw 2685 . . 3 (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥 ↔ ∃𝑛 ∈ ℤ ∀𝑚𝐴 𝑚𝑛)
81, 7sylib 121 . 2 (𝜑 → ∃𝑛 ∈ ℤ ∀𝑚𝐴 𝑚𝑛)
9 zsupssdc.m . . . . . . 7 (𝜑 → ∃𝑥 𝑥𝐴)
10 eleq1w 2218 . . . . . . . 8 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
1110cbvexv 1898 . . . . . . 7 (∃𝑥 𝑥𝐴 ↔ ∃𝑎 𝑎𝐴)
129, 11sylib 121 . . . . . 6 (𝜑 → ∃𝑎 𝑎𝐴)
1312adantr 274 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∃𝑎 𝑎𝐴)
14 uzssz 9464 . . . . . . 7 (ℤ‘-𝑛) ⊆ ℤ
15 rabss2 3211 . . . . . . 7 ((ℤ‘-𝑛) ⊆ ℤ → {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴} ⊆ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
1614, 15ax-mp 5 . . . . . 6 {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴} ⊆ {𝑤 ∈ ℤ ∣ -𝑤𝐴}
17 negeq 8073 . . . . . . . . . . . . . 14 (𝑏 = 𝑤 → -𝑏 = -𝑤)
1817eleq1d 2226 . . . . . . . . . . . . 13 (𝑏 = 𝑤 → (-𝑏𝐴 ↔ -𝑤𝐴))
19 simp1rl 1047 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑛 ∈ ℤ)
2019znegcld 9294 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑛 ∈ ℤ)
21 simp2 983 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ ℤ)
2221zred 9292 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ ℝ)
2319zred 9292 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑛 ∈ ℝ)
24 breq1 3970 . . . . . . . . . . . . . . . 16 (𝑚 = -𝑤 → (𝑚𝑛 ↔ -𝑤𝑛))
25 simp1rr 1048 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → ∀𝑚𝐴 𝑚𝑛)
26 simp3 984 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑤𝐴)
2724, 25, 26rspcdva 2821 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑤𝑛)
2822, 23, 27lenegcon1d 8407 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑛𝑤)
29 eluz2 9451 . . . . . . . . . . . . . 14 (𝑤 ∈ (ℤ‘-𝑛) ↔ (-𝑛 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ -𝑛𝑤))
3020, 21, 28, 29syl3anbrc 1166 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ (ℤ‘-𝑛))
3118, 30, 26elrabd 2870 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ {𝑏 ∈ (ℤ‘-𝑛) ∣ -𝑏𝐴})
3231rabssdv 3208 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ {𝑏 ∈ (ℤ‘-𝑛) ∣ -𝑏𝐴})
3318cbvrabv 2711 . . . . . . . . . . 11 {𝑏 ∈ (ℤ‘-𝑛) ∣ -𝑏𝐴} = {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴}
3432, 33sseqtrdi 3176 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴})
3516a1i 9 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴} ⊆ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
3634, 35eqssd 3145 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} = {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴})
3736infeq1d 6959 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) = inf({𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴}, ℝ, < ))
3837adantr 274 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) = inf({𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴}, ℝ, < ))
39 simprl 521 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → 𝑛 ∈ ℤ)
4039znegcld 9294 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → -𝑛 ∈ ℤ)
4140adantr 274 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → -𝑛 ∈ ℤ)
42 eqid 2157 . . . . . . . 8 {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴} = {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴}
43 negeq 8073 . . . . . . . . . 10 (𝑤 = -𝑎 → -𝑤 = --𝑎)
4443eleq1d 2226 . . . . . . . . 9 (𝑤 = -𝑎 → (-𝑤𝐴 ↔ --𝑎𝐴))
45 zsupssdc.a . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ℤ)
4645ad2antrr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → 𝐴 ⊆ ℤ)
47 simpr 109 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → 𝑎𝐴)
4846, 47sseldd 3129 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → 𝑎 ∈ ℤ)
4948znegcld 9294 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → -𝑎 ∈ ℤ)
50 breq1 3970 . . . . . . . . . . . 12 (𝑚 = 𝑎 → (𝑚𝑛𝑎𝑛))
51 simplrr 526 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → ∀𝑚𝐴 𝑚𝑛)
5250, 51, 47rspcdva 2821 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → 𝑎𝑛)
5348zred 9292 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
5439adantr 274 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → 𝑛 ∈ ℤ)
5554zred 9292 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → 𝑛 ∈ ℝ)
5653, 55lenegd 8404 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → (𝑎𝑛 ↔ -𝑛 ≤ -𝑎))
5752, 56mpbid 146 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → -𝑛 ≤ -𝑎)
58 eluz2 9451 . . . . . . . . . 10 (-𝑎 ∈ (ℤ‘-𝑛) ↔ (-𝑛 ∈ ℤ ∧ -𝑎 ∈ ℤ ∧ -𝑛 ≤ -𝑎))
5941, 49, 57, 58syl3anbrc 1166 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → -𝑎 ∈ (ℤ‘-𝑛))
6048zcnd 9293 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → 𝑎 ∈ ℂ)
6160negnegd 8182 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → --𝑎 = 𝑎)
6261, 47eqeltrd 2234 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → --𝑎𝐴)
6344, 59, 62elrabd 2870 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → -𝑎 ∈ {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴})
64 eleq1 2220 . . . . . . . . . . 11 (𝑥 = -𝑤 → (𝑥𝐴 ↔ -𝑤𝐴))
6564dcbid 824 . . . . . . . . . 10 (𝑥 = -𝑤 → (DECID 𝑥𝐴DECID -𝑤𝐴))
66 zsupssdc.dc . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
6766ad2antrr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
68 elfzelz 9935 . . . . . . . . . . . 12 (𝑤 ∈ (-𝑛...-𝑎) → 𝑤 ∈ ℤ)
6968adantl 275 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → 𝑤 ∈ ℤ)
7069znegcld 9294 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → -𝑤 ∈ ℤ)
7165, 67, 70rspcdva 2821 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → DECID -𝑤𝐴)
7271adantlr 469 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → DECID -𝑤𝐴)
7341, 42, 63, 72infssuzcldc 11851 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → inf({𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴})
7438, 73eqeltrd 2234 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴})
7516, 74sseldi 3126 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
7613, 75exlimddv 1878 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
77 negeq 8073 . . . . . . 7 (𝑛 = inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → -𝑛 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ))
7877eleq1d 2226 . . . . . 6 (𝑛 = inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (-𝑛𝐴 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴))
79 negeq 8073 . . . . . . . 8 (𝑤 = 𝑛 → -𝑤 = -𝑛)
8079eleq1d 2226 . . . . . . 7 (𝑤 = 𝑛 → (-𝑤𝐴 ↔ -𝑛𝐴))
8180cbvrabv 2711 . . . . . 6 {𝑤 ∈ ℤ ∣ -𝑤𝐴} = {𝑛 ∈ ℤ ∣ -𝑛𝐴}
8278, 81elrab2 2871 . . . . 5 (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴} ↔ (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ ∧ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴))
8382simprbi 273 . . . 4 (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴} → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴)
8476, 83syl 14 . . 3 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴)
85 ssrab2 3213 . . . . . . . . 9 {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ ℤ
8685, 75sseldi 3126 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ)
8786zred 9292 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
8887renegcld 8260 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
8941, 42, 63, 72infssuzledc 11850 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → inf({𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴}, ℝ, < ) ≤ -𝑎)
9038, 89eqbrtrd 3989 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ≤ -𝑎)
9187, 53, 90lenegcon2d 8408 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → 𝑎 ≤ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ))
9253, 88, 91lensymd 8002 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑎)
9392ralrimiva 2530 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∀𝑎𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑎)
94 breq2 3971 . . . . . 6 (𝑎 = 𝑦 → (-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑎 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
9594notbid 657 . . . . 5 (𝑎 = 𝑦 → (¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑎 ↔ ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
9695cbvralv 2680 . . . 4 (∀𝑎𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑎 ↔ ∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦)
9793, 96sylib 121 . . 3 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦)
98 breq2 3971 . . . . . . 7 (𝑧 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑦 < 𝑧𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )))
9998rspcev 2816 . . . . . 6 ((-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )) → ∃𝑧𝐴 𝑦 < 𝑧)
10099ex 114 . . . . 5 (-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴 → (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
10184, 100syl 14 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
102101ralrimivw 2531 . . 3 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
103 breq1 3970 . . . . . . 7 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑥 < 𝑦 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
104103notbid 657 . . . . . 6 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (¬ 𝑥 < 𝑦 ↔ ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
105104ralbidv 2457 . . . . 5 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
106 breq2 3971 . . . . . . 7 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑦 < 𝑥𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )))
107106imbi1d 230 . . . . . 6 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧)))
108107ralbidv 2457 . . . . 5 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧)))
109105, 108anbi12d 465 . . . 4 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))))
110109rspcev 2816 . . 3 ((-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴 ∧ (∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
11184, 97, 102, 110syl12anc 1218 . 2 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
1128, 111rexlimddv 2579 1 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  DECID wdc 820  w3a 963   = wceq 1335  wex 1472  wcel 2128  wral 2435  wrex 2436  {crab 2439  wss 3102   class class class wbr 3967  cfv 5173  (class class class)co 5827  infcinf 6930  cr 7734   < clt 7915  cle 7916  -cneg 8052  cz 9173  cuz 9445  ...cfz 9919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4085  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-addcom 7835  ax-addass 7837  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-0id 7843  ax-rnegex 7844  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-id 4256  df-po 4259  df-iso 4260  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-sup 6931  df-inf 6932  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-inn 8840  df-n0 9097  df-z 9174  df-uz 9446  df-fz 9920  df-fzo 10052
This theorem is referenced by:  suprzcl2dc  11855
  Copyright terms: Public domain W3C validator