| Step | Hyp | Ref
| Expression |
| 1 | | zsupssdc.ub |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 2 | | breq1 4036 |
. . . . . 6
⊢ (𝑦 = 𝑚 → (𝑦 ≤ 𝑥 ↔ 𝑚 ≤ 𝑥)) |
| 3 | 2 | cbvralvw 2733 |
. . . . 5
⊢
(∀𝑦 ∈
𝐴 𝑦 ≤ 𝑥 ↔ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑥) |
| 4 | | breq2 4037 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (𝑚 ≤ 𝑥 ↔ 𝑚 ≤ 𝑛)) |
| 5 | 4 | ralbidv 2497 |
. . . . 5
⊢ (𝑥 = 𝑛 → (∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑥 ↔ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) |
| 6 | 3, 5 | bitrid 192 |
. . . 4
⊢ (𝑥 = 𝑛 → (∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) |
| 7 | 6 | cbvrexvw 2734 |
. . 3
⊢
(∃𝑥 ∈
ℤ ∀𝑦 ∈
𝐴 𝑦 ≤ 𝑥 ↔ ∃𝑛 ∈ ℤ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛) |
| 8 | 1, 7 | sylib 122 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℤ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛) |
| 9 | | zsupssdc.m |
. . . . . . 7
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| 10 | | eleq1w 2257 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (𝑥 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴)) |
| 11 | 10 | cbvexv 1933 |
. . . . . . 7
⊢
(∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑎 𝑎 ∈ 𝐴) |
| 12 | 9, 11 | sylib 122 |
. . . . . 6
⊢ (𝜑 → ∃𝑎 𝑎 ∈ 𝐴) |
| 13 | 12 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → ∃𝑎 𝑎 ∈ 𝐴) |
| 14 | | uzssz 9621 |
. . . . . . 7
⊢
(ℤ≥‘-𝑛) ⊆ ℤ |
| 15 | | rabss2 3266 |
. . . . . . 7
⊢
((ℤ≥‘-𝑛) ⊆ ℤ → {𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴} ⊆ {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}) |
| 16 | 14, 15 | ax-mp 5 |
. . . . . 6
⊢ {𝑤 ∈
(ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴} ⊆ {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴} |
| 17 | | negeq 8219 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑤 → -𝑏 = -𝑤) |
| 18 | 17 | eleq1d 2265 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑤 → (-𝑏 ∈ 𝐴 ↔ -𝑤 ∈ 𝐴)) |
| 19 | | simp1rl 1064 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → 𝑛 ∈ ℤ) |
| 20 | 19 | znegcld 9450 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → -𝑛 ∈ ℤ) |
| 21 | | simp2 1000 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → 𝑤 ∈ ℤ) |
| 22 | 21 | zred 9448 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → 𝑤 ∈ ℝ) |
| 23 | 19 | zred 9448 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → 𝑛 ∈ ℝ) |
| 24 | | breq1 4036 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = -𝑤 → (𝑚 ≤ 𝑛 ↔ -𝑤 ≤ 𝑛)) |
| 25 | | simp1rr 1065 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛) |
| 26 | | simp3 1001 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → -𝑤 ∈ 𝐴) |
| 27 | 24, 25, 26 | rspcdva 2873 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → -𝑤 ≤ 𝑛) |
| 28 | 22, 23, 27 | lenegcon1d 8554 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → -𝑛 ≤ 𝑤) |
| 29 | | eluz2 9607 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈
(ℤ≥‘-𝑛) ↔ (-𝑛 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ -𝑛 ≤ 𝑤)) |
| 30 | 20, 21, 28, 29 | syl3anbrc 1183 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → 𝑤 ∈ (ℤ≥‘-𝑛)) |
| 31 | 18, 30, 26 | elrabd 2922 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → 𝑤 ∈ {𝑏 ∈ (ℤ≥‘-𝑛) ∣ -𝑏 ∈ 𝐴}) |
| 32 | 31 | rabssdv 3263 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴} ⊆ {𝑏 ∈ (ℤ≥‘-𝑛) ∣ -𝑏 ∈ 𝐴}) |
| 33 | 18 | cbvrabv 2762 |
. . . . . . . . . . 11
⊢ {𝑏 ∈
(ℤ≥‘-𝑛) ∣ -𝑏 ∈ 𝐴} = {𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴} |
| 34 | 32, 33 | sseqtrdi 3231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴} ⊆ {𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴}) |
| 35 | 16 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → {𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴} ⊆ {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}) |
| 36 | 34, 35 | eqssd 3200 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴} = {𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴}) |
| 37 | 36 | infeq1d 7078 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) = inf({𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴}, ℝ, < )) |
| 38 | 37 | adantr 276 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) = inf({𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴}, ℝ, < )) |
| 39 | | simprl 529 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → 𝑛 ∈ ℤ) |
| 40 | 39 | znegcld 9450 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → -𝑛 ∈ ℤ) |
| 41 | 40 | adantr 276 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → -𝑛 ∈ ℤ) |
| 42 | | eqid 2196 |
. . . . . . . 8
⊢ {𝑤 ∈
(ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴} = {𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴} |
| 43 | | negeq 8219 |
. . . . . . . . . 10
⊢ (𝑤 = -𝑎 → -𝑤 = --𝑎) |
| 44 | 43 | eleq1d 2265 |
. . . . . . . . 9
⊢ (𝑤 = -𝑎 → (-𝑤 ∈ 𝐴 ↔ --𝑎 ∈ 𝐴)) |
| 45 | | zsupssdc.a |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ⊆ ℤ) |
| 46 | 45 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → 𝐴 ⊆ ℤ) |
| 47 | | simpr 110 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) |
| 48 | 46, 47 | sseldd 3184 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℤ) |
| 49 | 48 | znegcld 9450 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → -𝑎 ∈ ℤ) |
| 50 | | breq1 4036 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑎 → (𝑚 ≤ 𝑛 ↔ 𝑎 ≤ 𝑛)) |
| 51 | | simplrr 536 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛) |
| 52 | 50, 51, 47 | rspcdva 2873 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ≤ 𝑛) |
| 53 | 48 | zred 9448 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℝ) |
| 54 | 39 | adantr 276 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → 𝑛 ∈ ℤ) |
| 55 | 54 | zred 9448 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → 𝑛 ∈ ℝ) |
| 56 | 53, 55 | lenegd 8551 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → (𝑎 ≤ 𝑛 ↔ -𝑛 ≤ -𝑎)) |
| 57 | 52, 56 | mpbid 147 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → -𝑛 ≤ -𝑎) |
| 58 | | eluz2 9607 |
. . . . . . . . . 10
⊢ (-𝑎 ∈
(ℤ≥‘-𝑛) ↔ (-𝑛 ∈ ℤ ∧ -𝑎 ∈ ℤ ∧ -𝑛 ≤ -𝑎)) |
| 59 | 41, 49, 57, 58 | syl3anbrc 1183 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → -𝑎 ∈ (ℤ≥‘-𝑛)) |
| 60 | 48 | zcnd 9449 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℂ) |
| 61 | 60 | negnegd 8328 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → --𝑎 = 𝑎) |
| 62 | 61, 47 | eqeltrd 2273 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → --𝑎 ∈ 𝐴) |
| 63 | 44, 59, 62 | elrabd 2922 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → -𝑎 ∈ {𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴}) |
| 64 | | eleq1 2259 |
. . . . . . . . . . 11
⊢ (𝑥 = -𝑤 → (𝑥 ∈ 𝐴 ↔ -𝑤 ∈ 𝐴)) |
| 65 | 64 | dcbid 839 |
. . . . . . . . . 10
⊢ (𝑥 = -𝑤 → (DECID 𝑥 ∈ 𝐴 ↔ DECID -𝑤 ∈ 𝐴)) |
| 66 | | zsupssdc.dc |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
| 67 | 66 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
| 68 | | elfzelz 10100 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ (-𝑛...-𝑎) → 𝑤 ∈ ℤ) |
| 69 | 68 | adantl 277 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → 𝑤 ∈ ℤ) |
| 70 | 69 | znegcld 9450 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → -𝑤 ∈ ℤ) |
| 71 | 65, 67, 70 | rspcdva 2873 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → DECID -𝑤 ∈ 𝐴) |
| 72 | 71 | adantlr 477 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → DECID -𝑤 ∈ 𝐴) |
| 73 | 41, 42, 63, 72 | infssuzcldc 10325 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → inf({𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈ {𝑤 ∈
(ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴}) |
| 74 | 38, 73 | eqeltrd 2273 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈ {𝑤 ∈
(ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴}) |
| 75 | 16, 74 | sselid 3181 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}) |
| 76 | 13, 75 | exlimddv 1913 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}) |
| 77 | | negeq 8219 |
. . . . . . 7
⊢ (𝑛 = inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → -𝑛 = -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < )) |
| 78 | 77 | eleq1d 2265 |
. . . . . 6
⊢ (𝑛 = inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → (-𝑛 ∈ 𝐴 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈ 𝐴)) |
| 79 | | negeq 8219 |
. . . . . . . 8
⊢ (𝑤 = 𝑛 → -𝑤 = -𝑛) |
| 80 | 79 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑤 = 𝑛 → (-𝑤 ∈ 𝐴 ↔ -𝑛 ∈ 𝐴)) |
| 81 | 80 | cbvrabv 2762 |
. . . . . 6
⊢ {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴} = {𝑛 ∈ ℤ ∣ -𝑛 ∈ 𝐴} |
| 82 | 78, 81 | elrab2 2923 |
. . . . 5
⊢
(inf({𝑤 ∈
ℤ ∣ -𝑤 ∈
𝐴}, ℝ, < ) ∈
{𝑤 ∈ ℤ ∣
-𝑤 ∈ 𝐴} ↔ (inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈ ℤ ∧
-inf({𝑤 ∈ ℤ
∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈ 𝐴)) |
| 83 | 82 | simprbi 275 |
. . . 4
⊢
(inf({𝑤 ∈
ℤ ∣ -𝑤 ∈
𝐴}, ℝ, < ) ∈
{𝑤 ∈ ℤ ∣
-𝑤 ∈ 𝐴} → -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈ 𝐴) |
| 84 | 76, 83 | syl 14 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈ 𝐴) |
| 85 | | ssrab2 3268 |
. . . . . . . . 9
⊢ {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴} ⊆ ℤ |
| 86 | 85, 75 | sselid 3181 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈
ℤ) |
| 87 | 86 | zred 9448 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈
ℝ) |
| 88 | 87 | renegcld 8406 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈
ℝ) |
| 89 | 41, 42, 63, 72 | infssuzledc 10324 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → inf({𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ≤ -𝑎) |
| 90 | 38, 89 | eqbrtrd 4055 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ≤ -𝑎) |
| 91 | 87, 53, 90 | lenegcon2d 8555 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ≤ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < )) |
| 92 | 53, 88, 91 | lensymd 8148 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑎) |
| 93 | 92 | ralrimiva 2570 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → ∀𝑎 ∈ 𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑎) |
| 94 | | breq2 4037 |
. . . . . 6
⊢ (𝑎 = 𝑦 → (-inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑎 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑦)) |
| 95 | 94 | notbid 668 |
. . . . 5
⊢ (𝑎 = 𝑦 → (¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑎 ↔ ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑦)) |
| 96 | 95 | cbvralv 2729 |
. . . 4
⊢
(∀𝑎 ∈
𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑎 ↔ ∀𝑦 ∈ 𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑦) |
| 97 | 93, 96 | sylib 122 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → ∀𝑦 ∈ 𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑦) |
| 98 | | breq2 4037 |
. . . . . . 7
⊢ (𝑧 = -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → (𝑦 < 𝑧 ↔ 𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ))) |
| 99 | 98 | rspcev 2868 |
. . . . . 6
⊢
((-inf({𝑤 ∈
ℤ ∣ -𝑤 ∈
𝐴}, ℝ, < ) ∈
𝐴 ∧ 𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < )) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) |
| 100 | 99 | ex 115 |
. . . . 5
⊢
(-inf({𝑤 ∈
ℤ ∣ -𝑤 ∈
𝐴}, ℝ, < ) ∈
𝐴 → (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
| 101 | 84, 100 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
| 102 | 101 | ralrimivw 2571 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → ∀𝑦 ∈ 𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
| 103 | | breq1 4036 |
. . . . . . 7
⊢ (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → (𝑥 < 𝑦 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑦)) |
| 104 | 103 | notbid 668 |
. . . . . 6
⊢ (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → (¬ 𝑥 < 𝑦 ↔ ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑦)) |
| 105 | 104 | ralbidv 2497 |
. . . . 5
⊢ (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑦)) |
| 106 | | breq2 4037 |
. . . . . . 7
⊢ (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → (𝑦 < 𝑥 ↔ 𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ))) |
| 107 | 106 | imbi1d 231 |
. . . . . 6
⊢ (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → ((𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) ↔ (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 108 | 107 | ralbidv 2497 |
. . . . 5
⊢ (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → (∀𝑦 ∈ 𝐵 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ 𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 109 | 105, 108 | anbi12d 473 |
. . . 4
⊢ (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → ((∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) |
| 110 | 109 | rspcev 2868 |
. . 3
⊢
((-inf({𝑤 ∈
ℤ ∣ -𝑤 ∈
𝐴}, ℝ, < ) ∈
𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 111 | 84, 97, 102, 110 | syl12anc 1247 |
. 2
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 112 | 8, 111 | rexlimddv 2619 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |