Step | Hyp | Ref
| Expression |
1 | | zsupssdc.ub |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
2 | | breq1 3992 |
. . . . . 6
⊢ (𝑦 = 𝑚 → (𝑦 ≤ 𝑥 ↔ 𝑚 ≤ 𝑥)) |
3 | 2 | cbvralvw 2700 |
. . . . 5
⊢
(∀𝑦 ∈
𝐴 𝑦 ≤ 𝑥 ↔ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑥) |
4 | | breq2 3993 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (𝑚 ≤ 𝑥 ↔ 𝑚 ≤ 𝑛)) |
5 | 4 | ralbidv 2470 |
. . . . 5
⊢ (𝑥 = 𝑛 → (∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑥 ↔ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) |
6 | 3, 5 | syl5bb 191 |
. . . 4
⊢ (𝑥 = 𝑛 → (∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) |
7 | 6 | cbvrexvw 2701 |
. . 3
⊢
(∃𝑥 ∈
ℤ ∀𝑦 ∈
𝐴 𝑦 ≤ 𝑥 ↔ ∃𝑛 ∈ ℤ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛) |
8 | 1, 7 | sylib 121 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℤ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛) |
9 | | zsupssdc.m |
. . . . . . 7
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
10 | | eleq1w 2231 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (𝑥 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴)) |
11 | 10 | cbvexv 1911 |
. . . . . . 7
⊢
(∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑎 𝑎 ∈ 𝐴) |
12 | 9, 11 | sylib 121 |
. . . . . 6
⊢ (𝜑 → ∃𝑎 𝑎 ∈ 𝐴) |
13 | 12 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → ∃𝑎 𝑎 ∈ 𝐴) |
14 | | uzssz 9506 |
. . . . . . 7
⊢
(ℤ≥‘-𝑛) ⊆ ℤ |
15 | | rabss2 3230 |
. . . . . . 7
⊢
((ℤ≥‘-𝑛) ⊆ ℤ → {𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴} ⊆ {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}) |
16 | 14, 15 | ax-mp 5 |
. . . . . 6
⊢ {𝑤 ∈
(ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴} ⊆ {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴} |
17 | | negeq 8112 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑤 → -𝑏 = -𝑤) |
18 | 17 | eleq1d 2239 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑤 → (-𝑏 ∈ 𝐴 ↔ -𝑤 ∈ 𝐴)) |
19 | | simp1rl 1057 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → 𝑛 ∈ ℤ) |
20 | 19 | znegcld 9336 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → -𝑛 ∈ ℤ) |
21 | | simp2 993 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → 𝑤 ∈ ℤ) |
22 | 21 | zred 9334 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → 𝑤 ∈ ℝ) |
23 | 19 | zred 9334 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → 𝑛 ∈ ℝ) |
24 | | breq1 3992 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = -𝑤 → (𝑚 ≤ 𝑛 ↔ -𝑤 ≤ 𝑛)) |
25 | | simp1rr 1058 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛) |
26 | | simp3 994 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → -𝑤 ∈ 𝐴) |
27 | 24, 25, 26 | rspcdva 2839 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → -𝑤 ≤ 𝑛) |
28 | 22, 23, 27 | lenegcon1d 8446 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → -𝑛 ≤ 𝑤) |
29 | | eluz2 9493 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈
(ℤ≥‘-𝑛) ↔ (-𝑛 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ -𝑛 ≤ 𝑤)) |
30 | 20, 21, 28, 29 | syl3anbrc 1176 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → 𝑤 ∈ (ℤ≥‘-𝑛)) |
31 | 18, 30, 26 | elrabd 2888 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → 𝑤 ∈ {𝑏 ∈ (ℤ≥‘-𝑛) ∣ -𝑏 ∈ 𝐴}) |
32 | 31 | rabssdv 3227 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴} ⊆ {𝑏 ∈ (ℤ≥‘-𝑛) ∣ -𝑏 ∈ 𝐴}) |
33 | 18 | cbvrabv 2729 |
. . . . . . . . . . 11
⊢ {𝑏 ∈
(ℤ≥‘-𝑛) ∣ -𝑏 ∈ 𝐴} = {𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴} |
34 | 32, 33 | sseqtrdi 3195 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴} ⊆ {𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴}) |
35 | 16 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → {𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴} ⊆ {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}) |
36 | 34, 35 | eqssd 3164 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴} = {𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴}) |
37 | 36 | infeq1d 6989 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) = inf({𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴}, ℝ, < )) |
38 | 37 | adantr 274 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) = inf({𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴}, ℝ, < )) |
39 | | simprl 526 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → 𝑛 ∈ ℤ) |
40 | 39 | znegcld 9336 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → -𝑛 ∈ ℤ) |
41 | 40 | adantr 274 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → -𝑛 ∈ ℤ) |
42 | | eqid 2170 |
. . . . . . . 8
⊢ {𝑤 ∈
(ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴} = {𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴} |
43 | | negeq 8112 |
. . . . . . . . . 10
⊢ (𝑤 = -𝑎 → -𝑤 = --𝑎) |
44 | 43 | eleq1d 2239 |
. . . . . . . . 9
⊢ (𝑤 = -𝑎 → (-𝑤 ∈ 𝐴 ↔ --𝑎 ∈ 𝐴)) |
45 | | zsupssdc.a |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ⊆ ℤ) |
46 | 45 | ad2antrr 485 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → 𝐴 ⊆ ℤ) |
47 | | simpr 109 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) |
48 | 46, 47 | sseldd 3148 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℤ) |
49 | 48 | znegcld 9336 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → -𝑎 ∈ ℤ) |
50 | | breq1 3992 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑎 → (𝑚 ≤ 𝑛 ↔ 𝑎 ≤ 𝑛)) |
51 | | simplrr 531 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛) |
52 | 50, 51, 47 | rspcdva 2839 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ≤ 𝑛) |
53 | 48 | zred 9334 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℝ) |
54 | 39 | adantr 274 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → 𝑛 ∈ ℤ) |
55 | 54 | zred 9334 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → 𝑛 ∈ ℝ) |
56 | 53, 55 | lenegd 8443 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → (𝑎 ≤ 𝑛 ↔ -𝑛 ≤ -𝑎)) |
57 | 52, 56 | mpbid 146 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → -𝑛 ≤ -𝑎) |
58 | | eluz2 9493 |
. . . . . . . . . 10
⊢ (-𝑎 ∈
(ℤ≥‘-𝑛) ↔ (-𝑛 ∈ ℤ ∧ -𝑎 ∈ ℤ ∧ -𝑛 ≤ -𝑎)) |
59 | 41, 49, 57, 58 | syl3anbrc 1176 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → -𝑎 ∈ (ℤ≥‘-𝑛)) |
60 | 48 | zcnd 9335 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℂ) |
61 | 60 | negnegd 8221 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → --𝑎 = 𝑎) |
62 | 61, 47 | eqeltrd 2247 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → --𝑎 ∈ 𝐴) |
63 | 44, 59, 62 | elrabd 2888 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → -𝑎 ∈ {𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴}) |
64 | | eleq1 2233 |
. . . . . . . . . . 11
⊢ (𝑥 = -𝑤 → (𝑥 ∈ 𝐴 ↔ -𝑤 ∈ 𝐴)) |
65 | 64 | dcbid 833 |
. . . . . . . . . 10
⊢ (𝑥 = -𝑤 → (DECID 𝑥 ∈ 𝐴 ↔ DECID -𝑤 ∈ 𝐴)) |
66 | | zsupssdc.dc |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
67 | 66 | ad2antrr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
68 | | elfzelz 9981 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ (-𝑛...-𝑎) → 𝑤 ∈ ℤ) |
69 | 68 | adantl 275 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → 𝑤 ∈ ℤ) |
70 | 69 | znegcld 9336 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → -𝑤 ∈ ℤ) |
71 | 65, 67, 70 | rspcdva 2839 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → DECID -𝑤 ∈ 𝐴) |
72 | 71 | adantlr 474 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → DECID -𝑤 ∈ 𝐴) |
73 | 41, 42, 63, 72 | infssuzcldc 11906 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → inf({𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈ {𝑤 ∈
(ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴}) |
74 | 38, 73 | eqeltrd 2247 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈ {𝑤 ∈
(ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴}) |
75 | 16, 74 | sselid 3145 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}) |
76 | 13, 75 | exlimddv 1891 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}) |
77 | | negeq 8112 |
. . . . . . 7
⊢ (𝑛 = inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → -𝑛 = -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < )) |
78 | 77 | eleq1d 2239 |
. . . . . 6
⊢ (𝑛 = inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → (-𝑛 ∈ 𝐴 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈ 𝐴)) |
79 | | negeq 8112 |
. . . . . . . 8
⊢ (𝑤 = 𝑛 → -𝑤 = -𝑛) |
80 | 79 | eleq1d 2239 |
. . . . . . 7
⊢ (𝑤 = 𝑛 → (-𝑤 ∈ 𝐴 ↔ -𝑛 ∈ 𝐴)) |
81 | 80 | cbvrabv 2729 |
. . . . . 6
⊢ {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴} = {𝑛 ∈ ℤ ∣ -𝑛 ∈ 𝐴} |
82 | 78, 81 | elrab2 2889 |
. . . . 5
⊢
(inf({𝑤 ∈
ℤ ∣ -𝑤 ∈
𝐴}, ℝ, < ) ∈
{𝑤 ∈ ℤ ∣
-𝑤 ∈ 𝐴} ↔ (inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈ ℤ ∧
-inf({𝑤 ∈ ℤ
∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈ 𝐴)) |
83 | 82 | simprbi 273 |
. . . 4
⊢
(inf({𝑤 ∈
ℤ ∣ -𝑤 ∈
𝐴}, ℝ, < ) ∈
{𝑤 ∈ ℤ ∣
-𝑤 ∈ 𝐴} → -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈ 𝐴) |
84 | 76, 83 | syl 14 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈ 𝐴) |
85 | | ssrab2 3232 |
. . . . . . . . 9
⊢ {𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴} ⊆ ℤ |
86 | 85, 75 | sselid 3145 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈
ℤ) |
87 | 86 | zred 9334 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈
ℝ) |
88 | 87 | renegcld 8299 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ∈
ℝ) |
89 | 41, 42, 63, 72 | infssuzledc 11905 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → inf({𝑤 ∈ (ℤ≥‘-𝑛) ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ≤ -𝑎) |
90 | 38, 89 | eqbrtrd 4011 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) ≤ -𝑎) |
91 | 87, 53, 90 | lenegcon2d 8447 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ≤ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < )) |
92 | 53, 88, 91 | lensymd 8041 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) ∧ 𝑎 ∈ 𝐴) → ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑎) |
93 | 92 | ralrimiva 2543 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → ∀𝑎 ∈ 𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑎) |
94 | | breq2 3993 |
. . . . . 6
⊢ (𝑎 = 𝑦 → (-inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑎 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑦)) |
95 | 94 | notbid 662 |
. . . . 5
⊢ (𝑎 = 𝑦 → (¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑎 ↔ ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑦)) |
96 | 95 | cbvralv 2696 |
. . . 4
⊢
(∀𝑎 ∈
𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑎 ↔ ∀𝑦 ∈ 𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑦) |
97 | 93, 96 | sylib 121 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → ∀𝑦 ∈ 𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑦) |
98 | | breq2 3993 |
. . . . . . 7
⊢ (𝑧 = -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → (𝑦 < 𝑧 ↔ 𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ))) |
99 | 98 | rspcev 2834 |
. . . . . 6
⊢
((-inf({𝑤 ∈
ℤ ∣ -𝑤 ∈
𝐴}, ℝ, < ) ∈
𝐴 ∧ 𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < )) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) |
100 | 99 | ex 114 |
. . . . 5
⊢
(-inf({𝑤 ∈
ℤ ∣ -𝑤 ∈
𝐴}, ℝ, < ) ∈
𝐴 → (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
101 | 84, 100 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
102 | 101 | ralrimivw 2544 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → ∀𝑦 ∈ 𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
103 | | breq1 3992 |
. . . . . . 7
⊢ (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → (𝑥 < 𝑦 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑦)) |
104 | 103 | notbid 662 |
. . . . . 6
⊢ (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → (¬ 𝑥 < 𝑦 ↔ ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑦)) |
105 | 104 | ralbidv 2470 |
. . . . 5
⊢ (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑦)) |
106 | | breq2 3993 |
. . . . . . 7
⊢ (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → (𝑦 < 𝑥 ↔ 𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ))) |
107 | 106 | imbi1d 230 |
. . . . . 6
⊢ (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → ((𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) ↔ (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
108 | 107 | ralbidv 2470 |
. . . . 5
⊢ (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → (∀𝑦 ∈ 𝐵 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ 𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
109 | 105, 108 | anbi12d 470 |
. . . 4
⊢ (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → ((∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) |
110 | 109 | rspcev 2834 |
. . 3
⊢
((-inf({𝑤 ∈
ℤ ∣ -𝑤 ∈
𝐴}, ℝ, < ) ∈
𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤 ∈ 𝐴}, ℝ, < ) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
111 | 84, 97, 102, 110 | syl12anc 1231 |
. 2
⊢ ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚 ∈ 𝐴 𝑚 ≤ 𝑛)) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
112 | 8, 111 | rexlimddv 2592 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |