ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupssdc GIF version

Theorem zsupssdc 10403
Description: An inhabited decidable bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-suploc 8066.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.)
Hypotheses
Ref Expression
zsupssdc.a (𝜑𝐴 ⊆ ℤ)
zsupssdc.m (𝜑 → ∃𝑥 𝑥𝐴)
zsupssdc.dc (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
zsupssdc.ub (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
Assertion
Ref Expression
zsupssdc (𝜑 → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐵(𝑦,𝑧)

Proof of Theorem zsupssdc
Dummy variables 𝑎 𝑚 𝑛 𝑤 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsupssdc.ub . . 3 (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
2 breq1 4054 . . . . . 6 (𝑦 = 𝑚 → (𝑦𝑥𝑚𝑥))
32cbvralvw 2743 . . . . 5 (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑚𝐴 𝑚𝑥)
4 breq2 4055 . . . . . 6 (𝑥 = 𝑛 → (𝑚𝑥𝑚𝑛))
54ralbidv 2507 . . . . 5 (𝑥 = 𝑛 → (∀𝑚𝐴 𝑚𝑥 ↔ ∀𝑚𝐴 𝑚𝑛))
63, 5bitrid 192 . . . 4 (𝑥 = 𝑛 → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑚𝐴 𝑚𝑛))
76cbvrexvw 2744 . . 3 (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥 ↔ ∃𝑛 ∈ ℤ ∀𝑚𝐴 𝑚𝑛)
81, 7sylib 122 . 2 (𝜑 → ∃𝑛 ∈ ℤ ∀𝑚𝐴 𝑚𝑛)
9 zsupssdc.m . . . . . . 7 (𝜑 → ∃𝑥 𝑥𝐴)
10 eleq1w 2267 . . . . . . . 8 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
1110cbvexv 1943 . . . . . . 7 (∃𝑥 𝑥𝐴 ↔ ∃𝑎 𝑎𝐴)
129, 11sylib 122 . . . . . 6 (𝜑 → ∃𝑎 𝑎𝐴)
1312adantr 276 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∃𝑎 𝑎𝐴)
14 uzssz 9688 . . . . . . 7 (ℤ‘-𝑛) ⊆ ℤ
15 rabss2 3280 . . . . . . 7 ((ℤ‘-𝑛) ⊆ ℤ → {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴} ⊆ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
1614, 15ax-mp 5 . . . . . 6 {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴} ⊆ {𝑤 ∈ ℤ ∣ -𝑤𝐴}
17 negeq 8285 . . . . . . . . . . . . . 14 (𝑏 = 𝑤 → -𝑏 = -𝑤)
1817eleq1d 2275 . . . . . . . . . . . . 13 (𝑏 = 𝑤 → (-𝑏𝐴 ↔ -𝑤𝐴))
19 simp1rl 1065 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑛 ∈ ℤ)
2019znegcld 9517 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑛 ∈ ℤ)
21 simp2 1001 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ ℤ)
2221zred 9515 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ ℝ)
2319zred 9515 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑛 ∈ ℝ)
24 breq1 4054 . . . . . . . . . . . . . . . 16 (𝑚 = -𝑤 → (𝑚𝑛 ↔ -𝑤𝑛))
25 simp1rr 1066 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → ∀𝑚𝐴 𝑚𝑛)
26 simp3 1002 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑤𝐴)
2724, 25, 26rspcdva 2886 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑤𝑛)
2822, 23, 27lenegcon1d 8620 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑛𝑤)
29 eluz2 9674 . . . . . . . . . . . . . 14 (𝑤 ∈ (ℤ‘-𝑛) ↔ (-𝑛 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ -𝑛𝑤))
3020, 21, 28, 29syl3anbrc 1184 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ (ℤ‘-𝑛))
3118, 30, 26elrabd 2935 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ {𝑏 ∈ (ℤ‘-𝑛) ∣ -𝑏𝐴})
3231rabssdv 3277 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ {𝑏 ∈ (ℤ‘-𝑛) ∣ -𝑏𝐴})
3318cbvrabv 2772 . . . . . . . . . . 11 {𝑏 ∈ (ℤ‘-𝑛) ∣ -𝑏𝐴} = {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴}
3432, 33sseqtrdi 3245 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴})
3516a1i 9 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴} ⊆ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
3634, 35eqssd 3214 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} = {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴})
3736infeq1d 7129 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) = inf({𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴}, ℝ, < ))
3837adantr 276 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) = inf({𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴}, ℝ, < ))
39 simprl 529 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → 𝑛 ∈ ℤ)
4039znegcld 9517 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → -𝑛 ∈ ℤ)
4140adantr 276 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → -𝑛 ∈ ℤ)
42 eqid 2206 . . . . . . . 8 {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴} = {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴}
43 negeq 8285 . . . . . . . . . 10 (𝑤 = -𝑎 → -𝑤 = --𝑎)
4443eleq1d 2275 . . . . . . . . 9 (𝑤 = -𝑎 → (-𝑤𝐴 ↔ --𝑎𝐴))
45 zsupssdc.a . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ℤ)
4645ad2antrr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → 𝐴 ⊆ ℤ)
47 simpr 110 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → 𝑎𝐴)
4846, 47sseldd 3198 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → 𝑎 ∈ ℤ)
4948znegcld 9517 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → -𝑎 ∈ ℤ)
50 breq1 4054 . . . . . . . . . . . 12 (𝑚 = 𝑎 → (𝑚𝑛𝑎𝑛))
51 simplrr 536 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → ∀𝑚𝐴 𝑚𝑛)
5250, 51, 47rspcdva 2886 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → 𝑎𝑛)
5348zred 9515 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
5439adantr 276 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → 𝑛 ∈ ℤ)
5554zred 9515 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → 𝑛 ∈ ℝ)
5653, 55lenegd 8617 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → (𝑎𝑛 ↔ -𝑛 ≤ -𝑎))
5752, 56mpbid 147 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → -𝑛 ≤ -𝑎)
58 eluz2 9674 . . . . . . . . . 10 (-𝑎 ∈ (ℤ‘-𝑛) ↔ (-𝑛 ∈ ℤ ∧ -𝑎 ∈ ℤ ∧ -𝑛 ≤ -𝑎))
5941, 49, 57, 58syl3anbrc 1184 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → -𝑎 ∈ (ℤ‘-𝑛))
6048zcnd 9516 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → 𝑎 ∈ ℂ)
6160negnegd 8394 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → --𝑎 = 𝑎)
6261, 47eqeltrd 2283 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → --𝑎𝐴)
6344, 59, 62elrabd 2935 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → -𝑎 ∈ {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴})
64 eleq1 2269 . . . . . . . . . . 11 (𝑥 = -𝑤 → (𝑥𝐴 ↔ -𝑤𝐴))
6564dcbid 840 . . . . . . . . . 10 (𝑥 = -𝑤 → (DECID 𝑥𝐴DECID -𝑤𝐴))
66 zsupssdc.dc . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
6766ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
68 elfzelz 10167 . . . . . . . . . . . 12 (𝑤 ∈ (-𝑛...-𝑎) → 𝑤 ∈ ℤ)
6968adantl 277 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → 𝑤 ∈ ℤ)
7069znegcld 9517 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → -𝑤 ∈ ℤ)
7165, 67, 70rspcdva 2886 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → DECID -𝑤𝐴)
7271adantlr 477 . . . . . . . 8 ((((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) ∧ 𝑤 ∈ (-𝑛...-𝑎)) → DECID -𝑤𝐴)
7341, 42, 63, 72infssuzcldc 10400 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → inf({𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴})
7438, 73eqeltrd 2283 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴})
7516, 74sselid 3195 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
7613, 75exlimddv 1923 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
77 negeq 8285 . . . . . . 7 (𝑛 = inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → -𝑛 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ))
7877eleq1d 2275 . . . . . 6 (𝑛 = inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (-𝑛𝐴 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴))
79 negeq 8285 . . . . . . . 8 (𝑤 = 𝑛 → -𝑤 = -𝑛)
8079eleq1d 2275 . . . . . . 7 (𝑤 = 𝑛 → (-𝑤𝐴 ↔ -𝑛𝐴))
8180cbvrabv 2772 . . . . . 6 {𝑤 ∈ ℤ ∣ -𝑤𝐴} = {𝑛 ∈ ℤ ∣ -𝑛𝐴}
8278, 81elrab2 2936 . . . . 5 (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴} ↔ (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ ∧ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴))
8382simprbi 275 . . . 4 (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴} → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴)
8476, 83syl 14 . . 3 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴)
85 ssrab2 3282 . . . . . . . . 9 {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ ℤ
8685, 75sselid 3195 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ)
8786zred 9515 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
8887renegcld 8472 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
8941, 42, 63, 72infssuzledc 10399 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → inf({𝑤 ∈ (ℤ‘-𝑛) ∣ -𝑤𝐴}, ℝ, < ) ≤ -𝑎)
9038, 89eqbrtrd 4073 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ≤ -𝑎)
9187, 53, 90lenegcon2d 8621 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → 𝑎 ≤ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ))
9253, 88, 91lensymd 8214 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑎𝐴) → ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑎)
9392ralrimiva 2580 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∀𝑎𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑎)
94 breq2 4055 . . . . . 6 (𝑎 = 𝑦 → (-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑎 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
9594notbid 669 . . . . 5 (𝑎 = 𝑦 → (¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑎 ↔ ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
9695cbvralv 2739 . . . 4 (∀𝑎𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑎 ↔ ∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦)
9793, 96sylib 122 . . 3 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦)
98 breq2 4055 . . . . . . 7 (𝑧 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑦 < 𝑧𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )))
9998rspcev 2881 . . . . . 6 ((-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )) → ∃𝑧𝐴 𝑦 < 𝑧)
10099ex 115 . . . . 5 (-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴 → (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
10184, 100syl 14 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
102101ralrimivw 2581 . . 3 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
103 breq1 4054 . . . . . . 7 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑥 < 𝑦 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
104103notbid 669 . . . . . 6 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (¬ 𝑥 < 𝑦 ↔ ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
105104ralbidv 2507 . . . . 5 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
106 breq2 4055 . . . . . . 7 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑦 < 𝑥𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )))
107106imbi1d 231 . . . . . 6 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧)))
108107ralbidv 2507 . . . . 5 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧)))
109105, 108anbi12d 473 . . . 4 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))))
110109rspcev 2881 . . 3 ((-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴 ∧ (∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
11184, 97, 102, 110syl12anc 1248 . 2 ((𝜑 ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
1128, 111rexlimddv 2629 1 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 836  w3a 981   = wceq 1373  wex 1516  wcel 2177  wral 2485  wrex 2486  {crab 2489  wss 3170   class class class wbr 4051  cfv 5280  (class class class)co 5957  infcinf 7100  cr 7944   < clt 8127  cle 8128  -cneg 8264  cz 9392  cuz 9668  ...cfz 10150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-po 4351  df-iso 4352  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-fzo 10285
This theorem is referenced by:  suprzcl2dc  10404
  Copyright terms: Public domain W3C validator