| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnmz | GIF version | ||
| Description: Elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| elnmz.1 | ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} |
| Ref | Expression |
|---|---|
| elnmz | ⊢ (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5975 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑥 + 𝑦) = (𝑥 + 𝑧)) | |
| 2 | 1 | eleq1d 2276 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥 + 𝑧) ∈ 𝑆)) |
| 3 | oveq1 5974 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑦 + 𝑥) = (𝑧 + 𝑥)) | |
| 4 | 3 | eleq1d 2276 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((𝑦 + 𝑥) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆)) |
| 5 | 2, 4 | bibi12d 235 | . . . 4 ⊢ (𝑦 = 𝑧 → (((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆))) |
| 6 | 5 | cbvralvw 2746 | . . 3 ⊢ (∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ∀𝑧 ∈ 𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆)) |
| 7 | oveq1 5974 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 + 𝑧) = (𝐴 + 𝑧)) | |
| 8 | 7 | eleq1d 2276 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝐴 + 𝑧) ∈ 𝑆)) |
| 9 | oveq2 5975 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑧 + 𝑥) = (𝑧 + 𝐴)) | |
| 10 | 9 | eleq1d 2276 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑧 + 𝑥) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)) |
| 11 | 8, 10 | bibi12d 235 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) |
| 12 | 11 | ralbidv 2508 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑧 ∈ 𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) |
| 13 | 6, 12 | bitrid 192 | . 2 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) |
| 14 | elnmz.1 | . 2 ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} | |
| 15 | 13, 14 | elrab2 2939 | 1 ⊢ (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ∀wral 2486 {crab 2490 (class class class)co 5967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: nmzbi 13660 nmzsubg 13661 ssnmz 13662 conjnmzb 13731 |
| Copyright terms: Public domain | W3C validator |