ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem1b GIF version

Theorem 2lgslem1b 15733
Description: Lemma 2 for 2lgslem1 15735. (Contributed by AV, 18-Jun-2021.)
Hypotheses
Ref Expression
2lgslem1b.i 𝐼 = (𝐴...𝐵)
2lgslem1b.f 𝐹 = (𝑗𝐼 ↦ (𝑗 · 2))
Assertion
Ref Expression
2lgslem1b 𝐹:𝐼1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
Distinct variable group:   𝑖,𝐼,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑖,𝑗)   𝐵(𝑥,𝑖,𝑗)   𝐹(𝑥,𝑖,𝑗)

Proof of Theorem 2lgslem1b
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2lgslem1b.f . . . 4 𝐹 = (𝑗𝐼 ↦ (𝑗 · 2))
2 eqeq1 2216 . . . . . 6 (𝑥 = (𝑗 · 2) → (𝑥 = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑖 · 2)))
32rexbidv 2511 . . . . 5 (𝑥 = (𝑗 · 2) → (∃𝑖𝐼 𝑥 = (𝑖 · 2) ↔ ∃𝑖𝐼 (𝑗 · 2) = (𝑖 · 2)))
4 elfzelz 10189 . . . . . . 7 (𝑗 ∈ (𝐴...𝐵) → 𝑗 ∈ ℤ)
5 2lgslem1b.i . . . . . . 7 𝐼 = (𝐴...𝐵)
64, 5eleq2s 2304 . . . . . 6 (𝑗𝐼𝑗 ∈ ℤ)
7 2z 9442 . . . . . . 7 2 ∈ ℤ
87a1i 9 . . . . . 6 (𝑗𝐼 → 2 ∈ ℤ)
96, 8zmulcld 9543 . . . . 5 (𝑗𝐼 → (𝑗 · 2) ∈ ℤ)
10 id 19 . . . . . 6 (𝑗𝐼𝑗𝐼)
11 oveq1 5981 . . . . . . . 8 (𝑖 = 𝑗 → (𝑖 · 2) = (𝑗 · 2))
1211eqeq2d 2221 . . . . . . 7 (𝑖 = 𝑗 → ((𝑗 · 2) = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑗 · 2)))
1312adantl 277 . . . . . 6 ((𝑗𝐼𝑖 = 𝑗) → ((𝑗 · 2) = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑗 · 2)))
14 eqidd 2210 . . . . . 6 (𝑗𝐼 → (𝑗 · 2) = (𝑗 · 2))
1510, 13, 14rspcedvd 2893 . . . . 5 (𝑗𝐼 → ∃𝑖𝐼 (𝑗 · 2) = (𝑖 · 2))
163, 9, 15elrabd 2941 . . . 4 (𝑗𝐼 → (𝑗 · 2) ∈ {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)})
171, 16fmpti 5760 . . 3 𝐹:𝐼⟶{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
18 oveq1 5981 . . . . . . 7 (𝑗 = 𝑦 → (𝑗 · 2) = (𝑦 · 2))
19 simpl 109 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑦𝐼)
20 elfzelz 10189 . . . . . . . . . 10 (𝑦 ∈ (𝐴...𝐵) → 𝑦 ∈ ℤ)
2120, 5eleq2s 2304 . . . . . . . . 9 (𝑦𝐼𝑦 ∈ ℤ)
22 id 19 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℤ)
237a1i 9 . . . . . . . . . 10 (𝑦 ∈ ℤ → 2 ∈ ℤ)
2422, 23zmulcld 9543 . . . . . . . . 9 (𝑦 ∈ ℤ → (𝑦 · 2) ∈ ℤ)
2521, 24syl 14 . . . . . . . 8 (𝑦𝐼 → (𝑦 · 2) ∈ ℤ)
2625adantr 276 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → (𝑦 · 2) ∈ ℤ)
271, 18, 19, 26fvmptd3 5701 . . . . . 6 ((𝑦𝐼𝑧𝐼) → (𝐹𝑦) = (𝑦 · 2))
28 oveq1 5981 . . . . . . 7 (𝑗 = 𝑧 → (𝑗 · 2) = (𝑧 · 2))
29 simpr 110 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑧𝐼)
30 elfzelz 10189 . . . . . . . . . 10 (𝑧 ∈ (𝐴...𝐵) → 𝑧 ∈ ℤ)
3130, 5eleq2s 2304 . . . . . . . . 9 (𝑧𝐼𝑧 ∈ ℤ)
327a1i 9 . . . . . . . . 9 (𝑧𝐼 → 2 ∈ ℤ)
3331, 32zmulcld 9543 . . . . . . . 8 (𝑧𝐼 → (𝑧 · 2) ∈ ℤ)
3433adantl 277 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → (𝑧 · 2) ∈ ℤ)
351, 28, 29, 34fvmptd3 5701 . . . . . 6 ((𝑦𝐼𝑧𝐼) → (𝐹𝑧) = (𝑧 · 2))
3627, 35eqeq12d 2224 . . . . 5 ((𝑦𝐼𝑧𝐼) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 · 2) = (𝑧 · 2)))
3721zcnd 9538 . . . . . . . 8 (𝑦𝐼𝑦 ∈ ℂ)
3837adantr 276 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑦 ∈ ℂ)
3931zcnd 9538 . . . . . . . 8 (𝑧𝐼𝑧 ∈ ℂ)
4039adantl 277 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑧 ∈ ℂ)
41 2cnd 9151 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 2 ∈ ℂ)
42 2ap0 9171 . . . . . . . 8 2 # 0
4342a1i 9 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 2 # 0)
4438, 40, 41, 43mulcanap2d 8777 . . . . . 6 ((𝑦𝐼𝑧𝐼) → ((𝑦 · 2) = (𝑧 · 2) ↔ 𝑦 = 𝑧))
4544biimpd 144 . . . . 5 ((𝑦𝐼𝑧𝐼) → ((𝑦 · 2) = (𝑧 · 2) → 𝑦 = 𝑧))
4636, 45sylbid 150 . . . 4 ((𝑦𝐼𝑧𝐼) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
4746rgen2 2596 . . 3 𝑦𝐼𝑧𝐼 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)
48 dff13 5865 . . 3 (𝐹:𝐼1-1→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ↔ (𝐹:𝐼⟶{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ∧ ∀𝑦𝐼𝑧𝐼 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
4917, 47, 48mpbir2an 947 . 2 𝐹:𝐼1-1→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
50 oveq1 5981 . . . . . . 7 (𝑗 = 𝑖 → (𝑗 · 2) = (𝑖 · 2))
5150eqeq2d 2221 . . . . . 6 (𝑗 = 𝑖 → (𝑥 = (𝑗 · 2) ↔ 𝑥 = (𝑖 · 2)))
5251cbvrexvw 2750 . . . . 5 (∃𝑗𝐼 𝑥 = (𝑗 · 2) ↔ ∃𝑖𝐼 𝑥 = (𝑖 · 2))
53 elfzelz 10189 . . . . . . . . . 10 (𝑖 ∈ (𝐴...𝐵) → 𝑖 ∈ ℤ)
547a1i 9 . . . . . . . . . 10 (𝑖 ∈ (𝐴...𝐵) → 2 ∈ ℤ)
5553, 54zmulcld 9543 . . . . . . . . 9 (𝑖 ∈ (𝐴...𝐵) → (𝑖 · 2) ∈ ℤ)
5655, 5eleq2s 2304 . . . . . . . 8 (𝑖𝐼 → (𝑖 · 2) ∈ ℤ)
57 eleq1 2272 . . . . . . . 8 (𝑥 = (𝑖 · 2) → (𝑥 ∈ ℤ ↔ (𝑖 · 2) ∈ ℤ))
5856, 57syl5ibrcom 157 . . . . . . 7 (𝑖𝐼 → (𝑥 = (𝑖 · 2) → 𝑥 ∈ ℤ))
5958rexlimiv 2622 . . . . . 6 (∃𝑖𝐼 𝑥 = (𝑖 · 2) → 𝑥 ∈ ℤ)
6059pm4.71ri 392 . . . . 5 (∃𝑖𝐼 𝑥 = (𝑖 · 2) ↔ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2)))
6152, 60bitri 184 . . . 4 (∃𝑗𝐼 𝑥 = (𝑗 · 2) ↔ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2)))
6261abbii 2325 . . 3 {𝑥 ∣ ∃𝑗𝐼 𝑥 = (𝑗 · 2)} = {𝑥 ∣ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2))}
631rnmpt 4948 . . 3 ran 𝐹 = {𝑥 ∣ ∃𝑗𝐼 𝑥 = (𝑗 · 2)}
64 df-rab 2497 . . 3 {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} = {𝑥 ∣ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2))}
6562, 63, 643eqtr4i 2240 . 2 ran 𝐹 = {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
66 dff1o5 5557 . 2 (𝐹:𝐼1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ↔ (𝐹:𝐼1-1→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ∧ ran 𝐹 = {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}))
6749, 65, 66mpbir2an 947 1 𝐹:𝐼1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  {cab 2195  wral 2488  wrex 2489  {crab 2492   class class class wbr 4062  cmpt 4124  ran crn 4697  wf 5290  1-1wf1 5291  1-1-ontowf1o 5293  cfv 5294  (class class class)co 5974  cc 7965  0cc0 7967   · cmul 7972   # cap 8696  2c2 9129  cz 9414  ...cfz 10172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-inn 9079  df-2 9137  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173
This theorem is referenced by:  2lgslem1  15735
  Copyright terms: Public domain W3C validator