Step | Hyp | Ref
| Expression |
1 | | 2lgslem1b.f |
. . . 4
⊢ 𝐹 = (𝑗 ∈ 𝐼 ↦ (𝑗 · 2)) |
2 | | eqeq1 2200 |
. . . . . 6
⊢ (𝑥 = (𝑗 · 2) → (𝑥 = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑖 · 2))) |
3 | 2 | rexbidv 2495 |
. . . . 5
⊢ (𝑥 = (𝑗 · 2) → (∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2) ↔ ∃𝑖 ∈ 𝐼 (𝑗 · 2) = (𝑖 · 2))) |
4 | | elfzelz 10094 |
. . . . . . 7
⊢ (𝑗 ∈ (𝐴...𝐵) → 𝑗 ∈ ℤ) |
5 | | 2lgslem1b.i |
. . . . . . 7
⊢ 𝐼 = (𝐴...𝐵) |
6 | 4, 5 | eleq2s 2288 |
. . . . . 6
⊢ (𝑗 ∈ 𝐼 → 𝑗 ∈ ℤ) |
7 | | 2z 9348 |
. . . . . . 7
⊢ 2 ∈
ℤ |
8 | 7 | a1i 9 |
. . . . . 6
⊢ (𝑗 ∈ 𝐼 → 2 ∈ ℤ) |
9 | 6, 8 | zmulcld 9448 |
. . . . 5
⊢ (𝑗 ∈ 𝐼 → (𝑗 · 2) ∈ ℤ) |
10 | | id 19 |
. . . . . 6
⊢ (𝑗 ∈ 𝐼 → 𝑗 ∈ 𝐼) |
11 | | oveq1 5926 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → (𝑖 · 2) = (𝑗 · 2)) |
12 | 11 | eqeq2d 2205 |
. . . . . . 7
⊢ (𝑖 = 𝑗 → ((𝑗 · 2) = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑗 · 2))) |
13 | 12 | adantl 277 |
. . . . . 6
⊢ ((𝑗 ∈ 𝐼 ∧ 𝑖 = 𝑗) → ((𝑗 · 2) = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑗 · 2))) |
14 | | eqidd 2194 |
. . . . . 6
⊢ (𝑗 ∈ 𝐼 → (𝑗 · 2) = (𝑗 · 2)) |
15 | 10, 13, 14 | rspcedvd 2871 |
. . . . 5
⊢ (𝑗 ∈ 𝐼 → ∃𝑖 ∈ 𝐼 (𝑗 · 2) = (𝑖 · 2)) |
16 | 3, 9, 15 | elrabd 2919 |
. . . 4
⊢ (𝑗 ∈ 𝐼 → (𝑗 · 2) ∈ {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)}) |
17 | 1, 16 | fmpti 5711 |
. . 3
⊢ 𝐹:𝐼⟶{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} |
18 | | oveq1 5926 |
. . . . . . 7
⊢ (𝑗 = 𝑦 → (𝑗 · 2) = (𝑦 · 2)) |
19 | | simpl 109 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → 𝑦 ∈ 𝐼) |
20 | | elfzelz 10094 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐴...𝐵) → 𝑦 ∈ ℤ) |
21 | 20, 5 | eleq2s 2288 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐼 → 𝑦 ∈ ℤ) |
22 | | id 19 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℤ) |
23 | 7 | a1i 9 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℤ → 2 ∈
ℤ) |
24 | 22, 23 | zmulcld 9448 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℤ → (𝑦 · 2) ∈
ℤ) |
25 | 21, 24 | syl 14 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐼 → (𝑦 · 2) ∈ ℤ) |
26 | 25 | adantr 276 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → (𝑦 · 2) ∈ ℤ) |
27 | 1, 18, 19, 26 | fvmptd3 5652 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → (𝐹‘𝑦) = (𝑦 · 2)) |
28 | | oveq1 5926 |
. . . . . . 7
⊢ (𝑗 = 𝑧 → (𝑗 · 2) = (𝑧 · 2)) |
29 | | simpr 110 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → 𝑧 ∈ 𝐼) |
30 | | elfzelz 10094 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝐴...𝐵) → 𝑧 ∈ ℤ) |
31 | 30, 5 | eleq2s 2288 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐼 → 𝑧 ∈ ℤ) |
32 | 7 | a1i 9 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐼 → 2 ∈ ℤ) |
33 | 31, 32 | zmulcld 9448 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐼 → (𝑧 · 2) ∈ ℤ) |
34 | 33 | adantl 277 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → (𝑧 · 2) ∈ ℤ) |
35 | 1, 28, 29, 34 | fvmptd3 5652 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → (𝐹‘𝑧) = (𝑧 · 2)) |
36 | 27, 35 | eqeq12d 2208 |
. . . . 5
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ (𝑦 · 2) = (𝑧 · 2))) |
37 | 21 | zcnd 9443 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐼 → 𝑦 ∈ ℂ) |
38 | 37 | adantr 276 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → 𝑦 ∈ ℂ) |
39 | 31 | zcnd 9443 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐼 → 𝑧 ∈ ℂ) |
40 | 39 | adantl 277 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → 𝑧 ∈ ℂ) |
41 | | 2cnd 9057 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → 2 ∈ ℂ) |
42 | | 2ap0 9077 |
. . . . . . . 8
⊢ 2 #
0 |
43 | 42 | a1i 9 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → 2 # 0) |
44 | 38, 40, 41, 43 | mulcanap2d 8683 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → ((𝑦 · 2) = (𝑧 · 2) ↔ 𝑦 = 𝑧)) |
45 | 44 | biimpd 144 |
. . . . 5
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → ((𝑦 · 2) = (𝑧 · 2) → 𝑦 = 𝑧)) |
46 | 36, 45 | sylbid 150 |
. . . 4
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
47 | 46 | rgen2 2580 |
. . 3
⊢
∀𝑦 ∈
𝐼 ∀𝑧 ∈ 𝐼 ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧) |
48 | | dff13 5812 |
. . 3
⊢ (𝐹:𝐼–1-1→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} ↔ (𝐹:𝐼⟶{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} ∧ ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 𝐼 ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧))) |
49 | 17, 47, 48 | mpbir2an 944 |
. 2
⊢ 𝐹:𝐼–1-1→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} |
50 | | oveq1 5926 |
. . . . . . 7
⊢ (𝑗 = 𝑖 → (𝑗 · 2) = (𝑖 · 2)) |
51 | 50 | eqeq2d 2205 |
. . . . . 6
⊢ (𝑗 = 𝑖 → (𝑥 = (𝑗 · 2) ↔ 𝑥 = (𝑖 · 2))) |
52 | 51 | cbvrexvw 2731 |
. . . . 5
⊢
(∃𝑗 ∈
𝐼 𝑥 = (𝑗 · 2) ↔ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)) |
53 | | elfzelz 10094 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (𝐴...𝐵) → 𝑖 ∈ ℤ) |
54 | 7 | a1i 9 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (𝐴...𝐵) → 2 ∈ ℤ) |
55 | 53, 54 | zmulcld 9448 |
. . . . . . . . 9
⊢ (𝑖 ∈ (𝐴...𝐵) → (𝑖 · 2) ∈ ℤ) |
56 | 55, 5 | eleq2s 2288 |
. . . . . . . 8
⊢ (𝑖 ∈ 𝐼 → (𝑖 · 2) ∈ ℤ) |
57 | | eleq1 2256 |
. . . . . . . 8
⊢ (𝑥 = (𝑖 · 2) → (𝑥 ∈ ℤ ↔ (𝑖 · 2) ∈
ℤ)) |
58 | 56, 57 | syl5ibrcom 157 |
. . . . . . 7
⊢ (𝑖 ∈ 𝐼 → (𝑥 = (𝑖 · 2) → 𝑥 ∈ ℤ)) |
59 | 58 | rexlimiv 2605 |
. . . . . 6
⊢
(∃𝑖 ∈
𝐼 𝑥 = (𝑖 · 2) → 𝑥 ∈ ℤ) |
60 | 59 | pm4.71ri 392 |
. . . . 5
⊢
(∃𝑖 ∈
𝐼 𝑥 = (𝑖 · 2) ↔ (𝑥 ∈ ℤ ∧ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2))) |
61 | 52, 60 | bitri 184 |
. . . 4
⊢
(∃𝑗 ∈
𝐼 𝑥 = (𝑗 · 2) ↔ (𝑥 ∈ ℤ ∧ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2))) |
62 | 61 | abbii 2309 |
. . 3
⊢ {𝑥 ∣ ∃𝑗 ∈ 𝐼 𝑥 = (𝑗 · 2)} = {𝑥 ∣ (𝑥 ∈ ℤ ∧ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2))} |
63 | 1 | rnmpt 4911 |
. . 3
⊢ ran 𝐹 = {𝑥 ∣ ∃𝑗 ∈ 𝐼 𝑥 = (𝑗 · 2)} |
64 | | df-rab 2481 |
. . 3
⊢ {𝑥 ∈ ℤ ∣
∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} = {𝑥 ∣ (𝑥 ∈ ℤ ∧ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2))} |
65 | 62, 63, 64 | 3eqtr4i 2224 |
. 2
⊢ ran 𝐹 = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} |
66 | | dff1o5 5510 |
. 2
⊢ (𝐹:𝐼–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} ↔ (𝐹:𝐼–1-1→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} ∧ ran 𝐹 = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)})) |
67 | 49, 65, 66 | mpbir2an 944 |
1
⊢ 𝐹:𝐼–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} |