Step | Hyp | Ref
| Expression |
1 | | lss1d.f |
. . 3
β’ πΉ = (Scalarβπ) |
2 | 1 | a1i 9 |
. 2
β’ ((π β LMod β§ π β π) β πΉ = (Scalarβπ)) |
3 | | lss1d.k |
. . 3
β’ πΎ = (BaseβπΉ) |
4 | 3 | a1i 9 |
. 2
β’ ((π β LMod β§ π β π) β πΎ = (BaseβπΉ)) |
5 | | lss1d.v |
. . 3
β’ π = (Baseβπ) |
6 | 5 | a1i 9 |
. 2
β’ ((π β LMod β§ π β π) β π = (Baseβπ)) |
7 | | eqidd 2178 |
. 2
β’ ((π β LMod β§ π β π) β (+gβπ) = (+gβπ)) |
8 | | lss1d.t |
. . 3
β’ Β· = (
Β·π βπ) |
9 | 8 | a1i 9 |
. 2
β’ ((π β LMod β§ π β π) β Β· = (
Β·π βπ)) |
10 | | lss1d.s |
. . 3
β’ π = (LSubSpβπ) |
11 | 10 | a1i 9 |
. 2
β’ ((π β LMod β§ π β π) β π = (LSubSpβπ)) |
12 | 5, 1, 8, 3 | lmodvscl 13400 |
. . . . . . 7
β’ ((π β LMod β§ π β πΎ β§ π β π) β (π Β· π) β π) |
13 | 12 | 3expa 1203 |
. . . . . 6
β’ (((π β LMod β§ π β πΎ) β§ π β π) β (π Β· π) β π) |
14 | 13 | an32s 568 |
. . . . 5
β’ (((π β LMod β§ π β π) β§ π β πΎ) β (π Β· π) β π) |
15 | | eleq1a 2249 |
. . . . 5
β’ ((π Β· π) β π β (π£ = (π Β· π) β π£ β π)) |
16 | 14, 15 | syl 14 |
. . . 4
β’ (((π β LMod β§ π β π) β§ π β πΎ) β (π£ = (π Β· π) β π£ β π)) |
17 | 16 | rexlimdva 2594 |
. . 3
β’ ((π β LMod β§ π β π) β (βπ β πΎ π£ = (π Β· π) β π£ β π)) |
18 | 17 | abssdv 3231 |
. 2
β’ ((π β LMod β§ π β π) β {π£ β£ βπ β πΎ π£ = (π Β· π)} β π) |
19 | | eqid 2177 |
. . . . . 6
β’
(0gβπΉ) = (0gβπΉ) |
20 | 1, 3, 19 | lmod0cl 13409 |
. . . . 5
β’ (π β LMod β
(0gβπΉ)
β πΎ) |
21 | | elex2 2755 |
. . . . 5
β’
((0gβπΉ) β πΎ β βπ π β πΎ) |
22 | 20, 21 | syl 14 |
. . . 4
β’ (π β LMod β βπ π β πΎ) |
23 | 22 | adantr 276 |
. . 3
β’ ((π β LMod β§ π β π) β βπ π β πΎ) |
24 | | nfv 1528 |
. . . 4
β’
β²π(π β LMod β§ π β π) |
25 | | nfre1 2520 |
. . . . . 6
β’
β²πβπ β πΎ π£ = (π Β· π) |
26 | 25 | nfsab 2169 |
. . . . 5
β’
β²π π β {π£ β£ βπ β πΎ π£ = (π Β· π)} |
27 | 26 | nfex 1637 |
. . . 4
β’
β²πβπ π β {π£ β£ βπ β πΎ π£ = (π Β· π)} |
28 | | vex 2742 |
. . . . . . . 8
β’ π β V |
29 | | vscaslid 12623 |
. . . . . . . . . . 11
β’ (
Β·π = Slot (
Β·π βndx) β§ (
Β·π βndx) β
β) |
30 | 29 | slotex 12491 |
. . . . . . . . . 10
β’ (π β LMod β (
Β·π βπ) β V) |
31 | 8, 30 | eqeltrid 2264 |
. . . . . . . . 9
β’ (π β LMod β Β· β
V) |
32 | 31 | adantr 276 |
. . . . . . . 8
β’ ((π β LMod β§ π β π) β Β· β
V) |
33 | | simpr 110 |
. . . . . . . 8
β’ ((π β LMod β§ π β π) β π β π) |
34 | | ovexg 5911 |
. . . . . . . 8
β’ ((π β V β§ Β· β
V β§ π β π) β (π Β· π) β V) |
35 | 28, 32, 33, 34 | mp3an2i 1342 |
. . . . . . 7
β’ ((π β LMod β§ π β π) β (π Β· π) β V) |
36 | | elabrexg 5761 |
. . . . . . 7
β’ ((π β πΎ β§ (π Β· π) β V) β (π Β· π) β {π£ β£ βπ β πΎ π£ = (π Β· π)}) |
37 | 35, 36 | sylan2 286 |
. . . . . 6
β’ ((π β πΎ β§ (π β LMod β§ π β π)) β (π Β· π) β {π£ β£ βπ β πΎ π£ = (π Β· π)}) |
38 | | elex2 2755 |
. . . . . 6
β’ ((π Β· π) β {π£ β£ βπ β πΎ π£ = (π Β· π)} β βπ π β {π£ β£ βπ β πΎ π£ = (π Β· π)}) |
39 | 37, 38 | syl 14 |
. . . . 5
β’ ((π β πΎ β§ (π β LMod β§ π β π)) β βπ π β {π£ β£ βπ β πΎ π£ = (π Β· π)}) |
40 | 39 | expcom 116 |
. . . 4
β’ ((π β LMod β§ π β π) β (π β πΎ β βπ π β {π£ β£ βπ β πΎ π£ = (π Β· π)})) |
41 | 24, 27, 40 | exlimd 1597 |
. . 3
β’ ((π β LMod β§ π β π) β (βπ π β πΎ β βπ π β {π£ β£ βπ β πΎ π£ = (π Β· π)})) |
42 | 23, 41 | mpd 13 |
. 2
β’ ((π β LMod β§ π β π) β βπ π β {π£ β£ βπ β πΎ π£ = (π Β· π)}) |
43 | | vex 2742 |
. . . . . . . . . . 11
β’ π β V |
44 | | eqeq1 2184 |
. . . . . . . . . . . 12
β’ (π£ = π β (π£ = (π Β· π) β π = (π Β· π))) |
45 | 44 | rexbidv 2478 |
. . . . . . . . . . 11
β’ (π£ = π β (βπ β πΎ π£ = (π Β· π) β βπ β πΎ π = (π Β· π))) |
46 | 43, 45 | elab 2883 |
. . . . . . . . . 10
β’ (π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β βπ β πΎ π = (π Β· π)) |
47 | | oveq1 5884 |
. . . . . . . . . . . 12
β’ (π = π¦ β (π Β· π) = (π¦ Β· π)) |
48 | 47 | eqeq2d 2189 |
. . . . . . . . . . 11
β’ (π = π¦ β (π = (π Β· π) β π = (π¦ Β· π))) |
49 | 48 | cbvrexvw 2710 |
. . . . . . . . . 10
β’
(βπ β
πΎ π = (π Β· π) β βπ¦ β πΎ π = (π¦ Β· π)) |
50 | 46, 49 | bitri 184 |
. . . . . . . . 9
β’ (π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β βπ¦ β πΎ π = (π¦ Β· π)) |
51 | | vex 2742 |
. . . . . . . . . . 11
β’ π β V |
52 | | eqeq1 2184 |
. . . . . . . . . . . 12
β’ (π£ = π β (π£ = (π Β· π) β π = (π Β· π))) |
53 | 52 | rexbidv 2478 |
. . . . . . . . . . 11
β’ (π£ = π β (βπ β πΎ π£ = (π Β· π) β βπ β πΎ π = (π Β· π))) |
54 | 51, 53 | elab 2883 |
. . . . . . . . . 10
β’ (π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β βπ β πΎ π = (π Β· π)) |
55 | | oveq1 5884 |
. . . . . . . . . . . 12
β’ (π = π§ β (π Β· π) = (π§ Β· π)) |
56 | 55 | eqeq2d 2189 |
. . . . . . . . . . 11
β’ (π = π§ β (π = (π Β· π) β π = (π§ Β· π))) |
57 | 56 | cbvrexvw 2710 |
. . . . . . . . . 10
β’
(βπ β
πΎ π = (π Β· π) β βπ§ β πΎ π = (π§ Β· π)) |
58 | 54, 57 | bitri 184 |
. . . . . . . . 9
β’ (π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β βπ§ β πΎ π = (π§ Β· π)) |
59 | 50, 58 | anbi12i 460 |
. . . . . . . 8
β’ ((π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β§ π β {π£ β£ βπ β πΎ π£ = (π Β· π)}) β (βπ¦ β πΎ π = (π¦ Β· π) β§ βπ§ β πΎ π = (π§ Β· π))) |
60 | | reeanv 2647 |
. . . . . . . 8
β’
(βπ¦ β
πΎ βπ§ β πΎ (π = (π¦ Β· π) β§ π = (π§ Β· π)) β (βπ¦ β πΎ π = (π¦ Β· π) β§ βπ§ β πΎ π = (π§ Β· π))) |
61 | 59, 60 | bitr4i 187 |
. . . . . . 7
β’ ((π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β§ π β {π£ β£ βπ β πΎ π£ = (π Β· π)}) β βπ¦ β πΎ βπ§ β πΎ (π = (π¦ Β· π) β§ π = (π§ Β· π))) |
62 | | simpll 527 |
. . . . . . . . . . . . 13
β’ (((π β LMod β§ π β π) β§ ((π¦ β πΎ β§ π§ β πΎ) β§ π₯ β πΎ)) β π β LMod) |
63 | | simprr 531 |
. . . . . . . . . . . . . 14
β’ (((π β LMod β§ π β π) β§ ((π¦ β πΎ β§ π§ β πΎ) β§ π₯ β πΎ)) β π₯ β πΎ) |
64 | | simprll 537 |
. . . . . . . . . . . . . 14
β’ (((π β LMod β§ π β π) β§ ((π¦ β πΎ β§ π§ β πΎ) β§ π₯ β πΎ)) β π¦ β πΎ) |
65 | | eqid 2177 |
. . . . . . . . . . . . . . 15
β’
(.rβπΉ) = (.rβπΉ) |
66 | 1, 3, 65 | lmodmcl 13395 |
. . . . . . . . . . . . . 14
β’ ((π β LMod β§ π₯ β πΎ β§ π¦ β πΎ) β (π₯(.rβπΉ)π¦) β πΎ) |
67 | 62, 63, 64, 66 | syl3anc 1238 |
. . . . . . . . . . . . 13
β’ (((π β LMod β§ π β π) β§ ((π¦ β πΎ β§ π§ β πΎ) β§ π₯ β πΎ)) β (π₯(.rβπΉ)π¦) β πΎ) |
68 | | simprlr 538 |
. . . . . . . . . . . . 13
β’ (((π β LMod β§ π β π) β§ ((π¦ β πΎ β§ π§ β πΎ) β§ π₯ β πΎ)) β π§ β πΎ) |
69 | | eqid 2177 |
. . . . . . . . . . . . . 14
β’
(+gβπΉ) = (+gβπΉ) |
70 | 1, 3, 69 | lmodacl 13394 |
. . . . . . . . . . . . 13
β’ ((π β LMod β§ (π₯(.rβπΉ)π¦) β πΎ β§ π§ β πΎ) β ((π₯(.rβπΉ)π¦)(+gβπΉ)π§) β πΎ) |
71 | 62, 67, 68, 70 | syl3anc 1238 |
. . . . . . . . . . . 12
β’ (((π β LMod β§ π β π) β§ ((π¦ β πΎ β§ π§ β πΎ) β§ π₯ β πΎ)) β ((π₯(.rβπΉ)π¦)(+gβπΉ)π§) β πΎ) |
72 | | simplr 528 |
. . . . . . . . . . . . . 14
β’ (((π β LMod β§ π β π) β§ ((π¦ β πΎ β§ π§ β πΎ) β§ π₯ β πΎ)) β π β π) |
73 | | eqid 2177 |
. . . . . . . . . . . . . . 15
β’
(+gβπ) = (+gβπ) |
74 | 5, 73, 1, 8, 3, 69 | lmodvsdir 13407 |
. . . . . . . . . . . . . 14
β’ ((π β LMod β§ ((π₯(.rβπΉ)π¦) β πΎ β§ π§ β πΎ β§ π β π)) β (((π₯(.rβπΉ)π¦)(+gβπΉ)π§) Β· π) = (((π₯(.rβπΉ)π¦) Β· π)(+gβπ)(π§ Β· π))) |
75 | 62, 67, 68, 72, 74 | syl13anc 1240 |
. . . . . . . . . . . . 13
β’ (((π β LMod β§ π β π) β§ ((π¦ β πΎ β§ π§ β πΎ) β§ π₯ β πΎ)) β (((π₯(.rβπΉ)π¦)(+gβπΉ)π§) Β· π) = (((π₯(.rβπΉ)π¦) Β· π)(+gβπ)(π§ Β· π))) |
76 | 5, 1, 8, 3, 65 | lmodvsass 13408 |
. . . . . . . . . . . . . . 15
β’ ((π β LMod β§ (π₯ β πΎ β§ π¦ β πΎ β§ π β π)) β ((π₯(.rβπΉ)π¦) Β· π) = (π₯ Β· (π¦ Β· π))) |
77 | 62, 63, 64, 72, 76 | syl13anc 1240 |
. . . . . . . . . . . . . 14
β’ (((π β LMod β§ π β π) β§ ((π¦ β πΎ β§ π§ β πΎ) β§ π₯ β πΎ)) β ((π₯(.rβπΉ)π¦) Β· π) = (π₯ Β· (π¦ Β· π))) |
78 | 77 | oveq1d 5892 |
. . . . . . . . . . . . 13
β’ (((π β LMod β§ π β π) β§ ((π¦ β πΎ β§ π§ β πΎ) β§ π₯ β πΎ)) β (((π₯(.rβπΉ)π¦) Β· π)(+gβπ)(π§ Β· π)) = ((π₯ Β· (π¦ Β· π))(+gβπ)(π§ Β· π))) |
79 | 75, 78 | eqtr2d 2211 |
. . . . . . . . . . . 12
β’ (((π β LMod β§ π β π) β§ ((π¦ β πΎ β§ π§ β πΎ) β§ π₯ β πΎ)) β ((π₯ Β· (π¦ Β· π))(+gβπ)(π§ Β· π)) = (((π₯(.rβπΉ)π¦)(+gβπΉ)π§) Β· π)) |
80 | | oveq1 5884 |
. . . . . . . . . . . . 13
β’ (π = ((π₯(.rβπΉ)π¦)(+gβπΉ)π§) β (π Β· π) = (((π₯(.rβπΉ)π¦)(+gβπΉ)π§) Β· π)) |
81 | 80 | rspceeqv 2861 |
. . . . . . . . . . . 12
β’ ((((π₯(.rβπΉ)π¦)(+gβπΉ)π§) β πΎ β§ ((π₯ Β· (π¦ Β· π))(+gβπ)(π§ Β· π)) = (((π₯(.rβπΉ)π¦)(+gβπΉ)π§) Β· π)) β βπ β πΎ ((π₯ Β· (π¦ Β· π))(+gβπ)(π§ Β· π)) = (π Β· π)) |
82 | 71, 79, 81 | syl2anc 411 |
. . . . . . . . . . 11
β’ (((π β LMod β§ π β π) β§ ((π¦ β πΎ β§ π§ β πΎ) β§ π₯ β πΎ)) β βπ β πΎ ((π₯ Β· (π¦ Β· π))(+gβπ)(π§ Β· π)) = (π Β· π)) |
83 | | oveq2 5885 |
. . . . . . . . . . . . . 14
β’ (π = (π¦ Β· π) β (π₯ Β· π) = (π₯ Β· (π¦ Β· π))) |
84 | | oveq12 5886 |
. . . . . . . . . . . . . 14
β’ (((π₯ Β· π) = (π₯ Β· (π¦ Β· π)) β§ π = (π§ Β· π)) β ((π₯ Β· π)(+gβπ)π) = ((π₯ Β· (π¦ Β· π))(+gβπ)(π§ Β· π))) |
85 | 83, 84 | sylan 283 |
. . . . . . . . . . . . 13
β’ ((π = (π¦ Β· π) β§ π = (π§ Β· π)) β ((π₯ Β· π)(+gβπ)π) = ((π₯ Β· (π¦ Β· π))(+gβπ)(π§ Β· π))) |
86 | 85 | eqeq1d 2186 |
. . . . . . . . . . . 12
β’ ((π = (π¦ Β· π) β§ π = (π§ Β· π)) β (((π₯ Β· π)(+gβπ)π) = (π Β· π) β ((π₯ Β· (π¦ Β· π))(+gβπ)(π§ Β· π)) = (π Β· π))) |
87 | 86 | rexbidv 2478 |
. . . . . . . . . . 11
β’ ((π = (π¦ Β· π) β§ π = (π§ Β· π)) β (βπ β πΎ ((π₯ Β· π)(+gβπ)π) = (π Β· π) β βπ β πΎ ((π₯ Β· (π¦ Β· π))(+gβπ)(π§ Β· π)) = (π Β· π))) |
88 | 82, 87 | syl5ibrcom 157 |
. . . . . . . . . 10
β’ (((π β LMod β§ π β π) β§ ((π¦ β πΎ β§ π§ β πΎ) β§ π₯ β πΎ)) β ((π = (π¦ Β· π) β§ π = (π§ Β· π)) β βπ β πΎ ((π₯ Β· π)(+gβπ)π) = (π Β· π))) |
89 | 88 | expr 375 |
. . . . . . . . 9
β’ (((π β LMod β§ π β π) β§ (π¦ β πΎ β§ π§ β πΎ)) β (π₯ β πΎ β ((π = (π¦ Β· π) β§ π = (π§ Β· π)) β βπ β πΎ ((π₯ Β· π)(+gβπ)π) = (π Β· π)))) |
90 | 89 | com23 78 |
. . . . . . . 8
β’ (((π β LMod β§ π β π) β§ (π¦ β πΎ β§ π§ β πΎ)) β ((π = (π¦ Β· π) β§ π = (π§ Β· π)) β (π₯ β πΎ β βπ β πΎ ((π₯ Β· π)(+gβπ)π) = (π Β· π)))) |
91 | 90 | rexlimdvva 2602 |
. . . . . . 7
β’ ((π β LMod β§ π β π) β (βπ¦ β πΎ βπ§ β πΎ (π = (π¦ Β· π) β§ π = (π§ Β· π)) β (π₯ β πΎ β βπ β πΎ ((π₯ Β· π)(+gβπ)π) = (π Β· π)))) |
92 | 61, 91 | biimtrid 152 |
. . . . . 6
β’ ((π β LMod β§ π β π) β ((π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β§ π β {π£ β£ βπ β πΎ π£ = (π Β· π)}) β (π₯ β πΎ β βπ β πΎ ((π₯ Β· π)(+gβπ)π) = (π Β· π)))) |
93 | 92 | expcomd 1441 |
. . . . 5
β’ ((π β LMod β§ π β π) β (π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β (π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β (π₯ β πΎ β βπ β πΎ ((π₯ Β· π)(+gβπ)π) = (π Β· π))))) |
94 | 93 | com24 87 |
. . . 4
β’ ((π β LMod β§ π β π) β (π₯ β πΎ β (π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β (π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β βπ β πΎ ((π₯ Β· π)(+gβπ)π) = (π Β· π))))) |
95 | 94 | 3imp2 1222 |
. . 3
β’ (((π β LMod β§ π β π) β§ (π₯ β πΎ β§ π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β§ π β {π£ β£ βπ β πΎ π£ = (π Β· π)})) β βπ β πΎ ((π₯ Β· π)(+gβπ)π) = (π Β· π)) |
96 | | vex 2742 |
. . . . . . 7
β’ π₯ β V |
97 | 43 | a1i 9 |
. . . . . . 7
β’ (π β LMod β π β V) |
98 | | ovexg 5911 |
. . . . . . 7
β’ ((π₯ β V β§ Β· β
V β§ π β V) β
(π₯ Β· π) β V) |
99 | 96, 31, 97, 98 | mp3an2i 1342 |
. . . . . 6
β’ (π β LMod β (π₯ Β· π) β V) |
100 | | plusgslid 12573 |
. . . . . . 7
β’
(+g = Slot (+gβndx) β§
(+gβndx) β β) |
101 | 100 | slotex 12491 |
. . . . . 6
β’ (π β LMod β
(+gβπ)
β V) |
102 | 51 | a1i 9 |
. . . . . 6
β’ (π β LMod β π β V) |
103 | | ovexg 5911 |
. . . . . 6
β’ (((π₯ Β· π) β V β§ (+gβπ) β V β§ π β V) β ((π₯ Β· π)(+gβπ)π) β V) |
104 | 99, 101, 102, 103 | syl3anc 1238 |
. . . . 5
β’ (π β LMod β ((π₯ Β· π)(+gβπ)π) β V) |
105 | | eqeq1 2184 |
. . . . . . 7
β’ (π£ = ((π₯ Β· π)(+gβπ)π) β (π£ = (π Β· π) β ((π₯ Β· π)(+gβπ)π) = (π Β· π))) |
106 | 105 | rexbidv 2478 |
. . . . . 6
β’ (π£ = ((π₯ Β· π)(+gβπ)π) β (βπ β πΎ π£ = (π Β· π) β βπ β πΎ ((π₯ Β· π)(+gβπ)π) = (π Β· π))) |
107 | 106 | elabg 2885 |
. . . . 5
β’ (((π₯ Β· π)(+gβπ)π) β V β (((π₯ Β· π)(+gβπ)π) β {π£ β£ βπ β πΎ π£ = (π Β· π)} β βπ β πΎ ((π₯ Β· π)(+gβπ)π) = (π Β· π))) |
108 | 104, 107 | syl 14 |
. . . 4
β’ (π β LMod β (((π₯ Β· π)(+gβπ)π) β {π£ β£ βπ β πΎ π£ = (π Β· π)} β βπ β πΎ ((π₯ Β· π)(+gβπ)π) = (π Β· π))) |
109 | 108 | ad2antrr 488 |
. . 3
β’ (((π β LMod β§ π β π) β§ (π₯ β πΎ β§ π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β§ π β {π£ β£ βπ β πΎ π£ = (π Β· π)})) β (((π₯ Β· π)(+gβπ)π) β {π£ β£ βπ β πΎ π£ = (π Β· π)} β βπ β πΎ ((π₯ Β· π)(+gβπ)π) = (π Β· π))) |
110 | 95, 109 | mpbird 167 |
. 2
β’ (((π β LMod β§ π β π) β§ (π₯ β πΎ β§ π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β§ π β {π£ β£ βπ β πΎ π£ = (π Β· π)})) β ((π₯ Β· π)(+gβπ)π) β {π£ β£ βπ β πΎ π£ = (π Β· π)}) |
111 | | simpl 109 |
. 2
β’ ((π β LMod β§ π β π) β π β LMod) |
112 | 2, 4, 6, 7, 9, 11,
18, 42, 110, 111 | islssmd 13451 |
1
β’ ((π β LMod β§ π β π) β {π£ β£ βπ β πΎ π£ = (π Β· π)} β π) |