Step | Hyp | Ref
| Expression |
1 | | 4sqlem11.1 |
. . . 4
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} |
2 | | 4sq.2 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℕ) |
3 | | 4sq.3 |
. . . 4
⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) |
4 | | 4sq.4 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ ℙ) |
5 | | 4sqlem11.5 |
. . . 4
⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} |
6 | | 4sqlem11.6 |
. . . 4
⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) |
7 | 1, 2, 3, 4, 5, 6 | 4sqlem11 12436 |
. . 3
⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ≠ ∅) |
8 | | prmnn 12145 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
9 | 4, 8 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ ℕ) |
10 | 2, 9, 5, 6 | 4sqleminfi 12432 |
. . . 4
⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ∈ Fin) |
11 | | fin0 6914 |
. . . 4
⊢ ((𝐴 ∩ ran 𝐹) ∈ Fin → ((𝐴 ∩ ran 𝐹) ≠ ∅ ↔ ∃𝑗 𝑗 ∈ (𝐴 ∩ ran 𝐹))) |
12 | 10, 11 | syl 14 |
. . 3
⊢ (𝜑 → ((𝐴 ∩ ran 𝐹) ≠ ∅ ↔ ∃𝑗 𝑗 ∈ (𝐴 ∩ ran 𝐹))) |
13 | 7, 12 | mpbid 147 |
. 2
⊢ (𝜑 → ∃𝑗 𝑗 ∈ (𝐴 ∩ ran 𝐹)) |
14 | | vex 2755 |
. . . . . . . 8
⊢ 𝑗 ∈ V |
15 | | eqeq1 2196 |
. . . . . . . . 9
⊢ (𝑢 = 𝑗 → (𝑢 = ((𝑚↑2) mod 𝑃) ↔ 𝑗 = ((𝑚↑2) mod 𝑃))) |
16 | 15 | rexbidv 2491 |
. . . . . . . 8
⊢ (𝑢 = 𝑗 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) ↔ ∃𝑚 ∈ (0...𝑁)𝑗 = ((𝑚↑2) mod 𝑃))) |
17 | 14, 16, 5 | elab2 2900 |
. . . . . . 7
⊢ (𝑗 ∈ 𝐴 ↔ ∃𝑚 ∈ (0...𝑁)𝑗 = ((𝑚↑2) mod 𝑃)) |
18 | 17 | a1i 9 |
. . . . . 6
⊢ (𝜑 → (𝑗 ∈ 𝐴 ↔ ∃𝑚 ∈ (0...𝑁)𝑗 = ((𝑚↑2) mod 𝑃))) |
19 | | abid 2177 |
. . . . . . . . 9
⊢ (𝑗 ∈ {𝑗 ∣ ∃𝑣 ∈ 𝐴 𝑗 = ((𝑃 − 1) − 𝑣)} ↔ ∃𝑣 ∈ 𝐴 𝑗 = ((𝑃 − 1) − 𝑣)) |
20 | 5 | rexeqi 2691 |
. . . . . . . . 9
⊢
(∃𝑣 ∈
𝐴 𝑗 = ((𝑃 − 1) − 𝑣) ↔ ∃𝑣 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}𝑗 = ((𝑃 − 1) − 𝑣)) |
21 | | oveq1 5904 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑛 → (𝑚↑2) = (𝑛↑2)) |
22 | 21 | oveq1d 5912 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑛 → ((𝑚↑2) mod 𝑃) = ((𝑛↑2) mod 𝑃)) |
23 | 22 | eqeq2d 2201 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (𝑢 = ((𝑚↑2) mod 𝑃) ↔ 𝑢 = ((𝑛↑2) mod 𝑃))) |
24 | 23 | cbvrexvw 2723 |
. . . . . . . . . . 11
⊢
(∃𝑚 ∈
(0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) ↔ ∃𝑛 ∈ (0...𝑁)𝑢 = ((𝑛↑2) mod 𝑃)) |
25 | | eqeq1 2196 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑣 → (𝑢 = ((𝑛↑2) mod 𝑃) ↔ 𝑣 = ((𝑛↑2) mod 𝑃))) |
26 | 25 | rexbidv 2491 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑣 → (∃𝑛 ∈ (0...𝑁)𝑢 = ((𝑛↑2) mod 𝑃) ↔ ∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃))) |
27 | 24, 26 | bitrid 192 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑣 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) ↔ ∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃))) |
28 | 27 | rexab 2914 |
. . . . . . . . 9
⊢
(∃𝑣 ∈
{𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}𝑗 = ((𝑃 − 1) − 𝑣) ↔ ∃𝑣(∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣))) |
29 | 19, 20, 28 | 3bitri 206 |
. . . . . . . 8
⊢ (𝑗 ∈ {𝑗 ∣ ∃𝑣 ∈ 𝐴 𝑗 = ((𝑃 − 1) − 𝑣)} ↔ ∃𝑣(∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣))) |
30 | 6 | rnmpt 4893 |
. . . . . . . . 9
⊢ ran 𝐹 = {𝑗 ∣ ∃𝑣 ∈ 𝐴 𝑗 = ((𝑃 − 1) − 𝑣)} |
31 | 30 | eleq2i 2256 |
. . . . . . . 8
⊢ (𝑗 ∈ ran 𝐹 ↔ 𝑗 ∈ {𝑗 ∣ ∃𝑣 ∈ 𝐴 𝑗 = ((𝑃 − 1) − 𝑣)}) |
32 | | rexcom4 2775 |
. . . . . . . . 9
⊢
(∃𝑛 ∈
(0...𝑁)∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ ∃𝑣∃𝑛 ∈ (0...𝑁)(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣))) |
33 | | r19.41v 2646 |
. . . . . . . . . 10
⊢
(∃𝑛 ∈
(0...𝑁)(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ (∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣))) |
34 | 33 | exbii 1616 |
. . . . . . . . 9
⊢
(∃𝑣∃𝑛 ∈ (0...𝑁)(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ ∃𝑣(∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣))) |
35 | 32, 34 | bitri 184 |
. . . . . . . 8
⊢
(∃𝑛 ∈
(0...𝑁)∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ ∃𝑣(∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣))) |
36 | 29, 31, 35 | 3bitr4i 212 |
. . . . . . 7
⊢ (𝑗 ∈ ran 𝐹 ↔ ∃𝑛 ∈ (0...𝑁)∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣))) |
37 | | elfzelz 10057 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (0...𝑁) → 𝑛 ∈ ℤ) |
38 | 37 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → 𝑛 ∈ ℤ) |
39 | | zsqcl 10625 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ → (𝑛↑2) ∈
ℤ) |
40 | 38, 39 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → (𝑛↑2) ∈ ℤ) |
41 | 9 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → 𝑃 ∈ ℕ) |
42 | 40, 41 | zmodcld 10378 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → ((𝑛↑2) mod 𝑃) ∈
ℕ0) |
43 | | oveq2 5905 |
. . . . . . . . . . 11
⊢ (𝑣 = ((𝑛↑2) mod 𝑃) → ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) |
44 | 43 | eqeq2d 2201 |
. . . . . . . . . 10
⊢ (𝑣 = ((𝑛↑2) mod 𝑃) → (𝑗 = ((𝑃 − 1) − 𝑣) ↔ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))) |
45 | 44 | ceqsexgv 2881 |
. . . . . . . . 9
⊢ (((𝑛↑2) mod 𝑃) ∈ ℕ0 →
(∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))) |
46 | 42, 45 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → (∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))) |
47 | 46 | rexbidva 2487 |
. . . . . . 7
⊢ (𝜑 → (∃𝑛 ∈ (0...𝑁)∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ ∃𝑛 ∈ (0...𝑁)𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))) |
48 | 36, 47 | bitrid 192 |
. . . . . 6
⊢ (𝜑 → (𝑗 ∈ ran 𝐹 ↔ ∃𝑛 ∈ (0...𝑁)𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))) |
49 | 18, 48 | anbi12d 473 |
. . . . 5
⊢ (𝜑 → ((𝑗 ∈ 𝐴 ∧ 𝑗 ∈ ran 𝐹) ↔ (∃𝑚 ∈ (0...𝑁)𝑗 = ((𝑚↑2) mod 𝑃) ∧ ∃𝑛 ∈ (0...𝑁)𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))))) |
50 | | elin 3333 |
. . . . 5
⊢ (𝑗 ∈ (𝐴 ∩ ran 𝐹) ↔ (𝑗 ∈ 𝐴 ∧ 𝑗 ∈ ran 𝐹)) |
51 | | reeanv 2660 |
. . . . 5
⊢
(∃𝑚 ∈
(0...𝑁)∃𝑛 ∈ (0...𝑁)(𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) ↔ (∃𝑚 ∈ (0...𝑁)𝑗 = ((𝑚↑2) mod 𝑃) ∧ ∃𝑛 ∈ (0...𝑁)𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))) |
52 | 49, 50, 51 | 3bitr4g 223 |
. . . 4
⊢ (𝜑 → (𝑗 ∈ (𝐴 ∩ ran 𝐹) ↔ ∃𝑚 ∈ (0...𝑁)∃𝑛 ∈ (0...𝑁)(𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))))) |
53 | | eqtr2 2208 |
. . . . . 6
⊢ ((𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) |
54 | 9 | nnzd 9405 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 ∈ ℤ) |
55 | | peano2zm 9322 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ ℤ → (𝑃 − 1) ∈
ℤ) |
56 | 54, 55 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑃 − 1) ∈ ℤ) |
57 | | zq 9658 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 − 1) ∈ ℤ
→ (𝑃 − 1) ∈
ℚ) |
58 | 56, 57 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑃 − 1) ∈ ℚ) |
59 | 58 | 3ad2ant1 1020 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) ∈ ℚ) |
60 | | zq 9658 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ ℤ → 𝑃 ∈
ℚ) |
61 | 54, 60 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 ∈ ℚ) |
62 | 61 | 3ad2ant1 1020 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℚ) |
63 | 4 | 3ad2ant1 1020 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℙ) |
64 | 63, 8 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℕ) |
65 | | nnm1nn0 9248 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈
ℕ0) |
66 | 64, 65 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) ∈
ℕ0) |
67 | 66 | nn0ge0d 9263 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 ≤ (𝑃 − 1)) |
68 | 64 | nnred 8963 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℝ) |
69 | 68 | ltm1d 8920 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) < 𝑃) |
70 | | modqid 10382 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑃 − 1) ∈ ℚ ∧
𝑃 ∈ ℚ) ∧ (0
≤ (𝑃 − 1) ∧
(𝑃 − 1) < 𝑃)) → ((𝑃 − 1) mod 𝑃) = (𝑃 − 1)) |
71 | 59, 62, 67, 69, 70 | syl22anc 1250 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑃 − 1) mod 𝑃) = (𝑃 − 1)) |
72 | 71 | oveq1d 5912 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑃 − 1) mod 𝑃) − ((𝑛↑2) mod 𝑃)) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) |
73 | | simp2r 1026 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑛 ∈ (0...𝑁)) |
74 | 73 | elfzelzd 10058 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑛 ∈ ℤ) |
75 | 74, 39 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ∈ ℤ) |
76 | | zq 9658 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛↑2) ∈ ℤ →
(𝑛↑2) ∈
ℚ) |
77 | 75, 76 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ∈ ℚ) |
78 | 64 | nngt0d 8994 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 < 𝑃) |
79 | | modqlt 10366 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑛↑2) ∈ ℚ ∧
𝑃 ∈ ℚ ∧ 0
< 𝑃) → ((𝑛↑2) mod 𝑃) < 𝑃) |
80 | 77, 62, 78, 79 | syl3anc 1249 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) < 𝑃) |
81 | 75, 64 | zmodcld 10378 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) ∈
ℕ0) |
82 | 81 | nn0zd 9404 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) ∈ ℤ) |
83 | | prmz 12146 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
84 | 63, 83 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℤ) |
85 | | zltlem1 9341 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛↑2) mod 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑛↑2) mod 𝑃) < 𝑃 ↔ ((𝑛↑2) mod 𝑃) ≤ (𝑃 − 1))) |
86 | 82, 84, 85 | syl2anc 411 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑛↑2) mod 𝑃) < 𝑃 ↔ ((𝑛↑2) mod 𝑃) ≤ (𝑃 − 1))) |
87 | 80, 86 | mpbid 147 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) ≤ (𝑃 − 1)) |
88 | 87, 71 | breqtrrd 4046 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) ≤ ((𝑃 − 1) mod 𝑃)) |
89 | | modqsubdir 10426 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑃 − 1) ∈ ℚ ∧
(𝑛↑2) ∈ ℚ)
∧ (𝑃 ∈ ℚ
∧ 0 < 𝑃)) →
(((𝑛↑2) mod 𝑃) ≤ ((𝑃 − 1) mod 𝑃) ↔ (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) = (((𝑃 − 1) mod 𝑃) − ((𝑛↑2) mod 𝑃)))) |
90 | 59, 77, 62, 78, 89 | syl22anc 1250 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑛↑2) mod 𝑃) ≤ ((𝑃 − 1) mod 𝑃) ↔ (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) = (((𝑃 − 1) mod 𝑃) − ((𝑛↑2) mod 𝑃)))) |
91 | 88, 90 | mpbid 147 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) = (((𝑃 − 1) mod 𝑃) − ((𝑛↑2) mod 𝑃))) |
92 | | simp3 1001 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) |
93 | 72, 91, 92 | 3eqtr4rd 2233 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) mod 𝑃) = (((𝑃 − 1) − (𝑛↑2)) mod 𝑃)) |
94 | | simp2l 1025 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑚 ∈ (0...𝑁)) |
95 | 94 | elfzelzd 10058 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑚 ∈ ℤ) |
96 | | zsqcl 10625 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℤ → (𝑚↑2) ∈
ℤ) |
97 | 95, 96 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ∈ ℤ) |
98 | 66 | nn0zd 9404 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) ∈ ℤ) |
99 | 98, 75 | zsubcld 9411 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑃 − 1) − (𝑛↑2)) ∈ ℤ) |
100 | | moddvds 11841 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℕ ∧ (𝑚↑2) ∈ ℤ ∧
((𝑃 − 1) −
(𝑛↑2)) ∈ ℤ)
→ (((𝑚↑2) mod
𝑃) = (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2))))) |
101 | 64, 97, 99, 100 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) mod 𝑃) = (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2))))) |
102 | 93, 101 | mpbid 147 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∥ ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2)))) |
103 | | zsqcl2 10632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℤ → (𝑚↑2) ∈
ℕ0) |
104 | 95, 103 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ∈
ℕ0) |
105 | 104 | nn0cnd 9262 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ∈ ℂ) |
106 | 66 | nn0cnd 9262 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) ∈ ℂ) |
107 | | zsqcl2 10632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℤ → (𝑛↑2) ∈
ℕ0) |
108 | 74, 107 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ∈
ℕ0) |
109 | 108 | nn0cnd 9262 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ∈ ℂ) |
110 | 105, 106,
109 | subsub3d 8329 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2))) = (((𝑚↑2) + (𝑛↑2)) − (𝑃 − 1))) |
111 | 104, 108 | nn0addcld 9264 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ∈
ℕ0) |
112 | 111 | nn0cnd 9262 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ∈ ℂ) |
113 | 64 | nncnd 8964 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℂ) |
114 | | 1cnd 8004 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 1 ∈
ℂ) |
115 | 112, 113,
114 | subsub3d 8329 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) − (𝑃 − 1)) = ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃)) |
116 | 110, 115 | eqtrd 2222 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2))) = ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃)) |
117 | 102, 116 | breqtrd 4044 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∥ ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃)) |
118 | | nn0p1nn 9246 |
. . . . . . . . . . . . . 14
⊢ (((𝑚↑2) + (𝑛↑2)) ∈ ℕ0 →
(((𝑚↑2) + (𝑛↑2)) + 1) ∈
ℕ) |
119 | 111, 118 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) ∈
ℕ) |
120 | 119 | nnzd 9405 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) ∈
ℤ) |
121 | | dvdssubr 11881 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℤ ∧ (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℤ) → (𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1) ↔ 𝑃 ∥ ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃))) |
122 | 84, 120, 121 | syl2anc 411 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1) ↔ 𝑃 ∥ ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃))) |
123 | 117, 122 | mpbird 167 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1)) |
124 | 64 | nnne0d 8995 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ≠ 0) |
125 | | dvdsval2 11832 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℤ) → (𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1) ↔ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ)) |
126 | 84, 124, 120, 125 | syl3anc 1249 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1) ↔ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ)) |
127 | 123, 126 | mpbid 147 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ) |
128 | | nnrp 9695 |
. . . . . . . . . . . . . 14
⊢ ((((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℕ → (((𝑚↑2) + (𝑛↑2)) + 1) ∈
ℝ+) |
129 | | nnrp 9695 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℝ+) |
130 | | rpdivcl 9711 |
. . . . . . . . . . . . . 14
⊢
(((((𝑚↑2) +
(𝑛↑2)) + 1) ∈
ℝ+ ∧ 𝑃
∈ ℝ+) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈
ℝ+) |
131 | 128, 129,
130 | syl2an 289 |
. . . . . . . . . . . . 13
⊢
(((((𝑚↑2) +
(𝑛↑2)) + 1) ∈
ℕ ∧ 𝑃 ∈
ℕ) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈
ℝ+) |
132 | 119, 64, 131 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈
ℝ+) |
133 | 132 | rpgt0d 9731 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 < ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃)) |
134 | | elnnz 9294 |
. . . . . . . . . . 11
⊢
(((((𝑚↑2) +
(𝑛↑2)) + 1) / 𝑃) ∈ ℕ ↔
(((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ ∧ 0 <
((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃))) |
135 | 127, 133,
134 | sylanbrc 417 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℕ) |
136 | 135 | nnge1d 8993 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 1 ≤ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃)) |
137 | 111 | nn0red 9261 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ∈ ℝ) |
138 | | 2nn 9111 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℕ |
139 | 2 | 3ad2ant1 1020 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑁 ∈ ℕ) |
140 | | nnmulcl 8971 |
. . . . . . . . . . . . . . . 16
⊢ ((2
∈ ℕ ∧ 𝑁
∈ ℕ) → (2 · 𝑁) ∈ ℕ) |
141 | 138, 139,
140 | sylancr 414 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · 𝑁) ∈ ℕ) |
142 | 141 | nnred 8963 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · 𝑁) ∈ ℝ) |
143 | 142 | resqcld 10714 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((2 · 𝑁)↑2) ∈ ℝ) |
144 | | nnmulcl 8971 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℕ ∧ (2 · 𝑁) ∈ ℕ) → (2 · (2
· 𝑁)) ∈
ℕ) |
145 | 138, 141,
144 | sylancr 414 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (2 · 𝑁)) ∈
ℕ) |
146 | 145 | nnred 8963 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (2 · 𝑁)) ∈
ℝ) |
147 | 143, 146 | readdcld 8018 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) ∈
ℝ) |
148 | | 1red 8003 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 1 ∈
ℝ) |
149 | 139 | nnsqcld 10709 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑁↑2) ∈ ℕ) |
150 | | nnmulcl 8971 |
. . . . . . . . . . . . . . . 16
⊢ ((2
∈ ℕ ∧ (𝑁↑2) ∈ ℕ) → (2 ·
(𝑁↑2)) ∈
ℕ) |
151 | 138, 149,
150 | sylancr 414 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) ∈ ℕ) |
152 | 151 | nnred 8963 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) ∈ ℝ) |
153 | 104 | nn0red 9261 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ∈ ℝ) |
154 | 108 | nn0red 9261 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ∈ ℝ) |
155 | 149 | nnred 8963 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑁↑2) ∈ ℝ) |
156 | 95 | zred 9406 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑚 ∈ ℝ) |
157 | | elfzle1 10059 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ (0...𝑁) → 0 ≤ 𝑚) |
158 | 94, 157 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 ≤ 𝑚) |
159 | 139 | nnred 8963 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑁 ∈ ℝ) |
160 | | elfzle2 10060 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ (0...𝑁) → 𝑚 ≤ 𝑁) |
161 | 94, 160 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑚 ≤ 𝑁) |
162 | | le2sq2 10630 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ℝ ∧ 0 ≤
𝑚) ∧ (𝑁 ∈ ℝ ∧ 𝑚 ≤ 𝑁)) → (𝑚↑2) ≤ (𝑁↑2)) |
163 | 156, 158,
159, 161, 162 | syl22anc 1250 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ≤ (𝑁↑2)) |
164 | 74 | zred 9406 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑛 ∈ ℝ) |
165 | | elfzle1 10059 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (0...𝑁) → 0 ≤ 𝑛) |
166 | 73, 165 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 ≤ 𝑛) |
167 | | elfzle2 10060 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (0...𝑁) → 𝑛 ≤ 𝑁) |
168 | 73, 167 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑛 ≤ 𝑁) |
169 | | le2sq2 10630 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ ℝ ∧ 0 ≤
𝑛) ∧ (𝑁 ∈ ℝ ∧ 𝑛 ≤ 𝑁)) → (𝑛↑2) ≤ (𝑁↑2)) |
170 | 164, 166,
159, 168, 169 | syl22anc 1250 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ≤ (𝑁↑2)) |
171 | 153, 154,
155, 155, 163, 170 | le2addd 8551 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ≤ ((𝑁↑2) + (𝑁↑2))) |
172 | 149 | nncnd 8964 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑁↑2) ∈ ℂ) |
173 | 172 | 2timesd 9192 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) = ((𝑁↑2) + (𝑁↑2))) |
174 | 171, 173 | breqtrrd 4046 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ≤ (2 · (𝑁↑2))) |
175 | | 2lt4 9123 |
. . . . . . . . . . . . . . . 16
⊢ 2 <
4 |
176 | | 2re 9020 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℝ |
177 | 176 | a1i 9 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 2 ∈
ℝ) |
178 | | 4re 9027 |
. . . . . . . . . . . . . . . . . 18
⊢ 4 ∈
ℝ |
179 | 178 | a1i 9 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 4 ∈
ℝ) |
180 | 149 | nngt0d 8994 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 < (𝑁↑2)) |
181 | | ltmul1 8580 |
. . . . . . . . . . . . . . . . 17
⊢ ((2
∈ ℝ ∧ 4 ∈ ℝ ∧ ((𝑁↑2) ∈ ℝ ∧ 0 < (𝑁↑2))) → (2 < 4
↔ (2 · (𝑁↑2)) < (4 · (𝑁↑2)))) |
182 | 177, 179,
155, 180, 181 | syl112anc 1253 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 < 4 ↔ (2 ·
(𝑁↑2)) < (4
· (𝑁↑2)))) |
183 | 175, 182 | mpbii 148 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) < (4 · (𝑁↑2))) |
184 | | 2cn 9021 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℂ |
185 | 139 | nncnd 8964 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑁 ∈ ℂ) |
186 | | sqmul 10616 |
. . . . . . . . . . . . . . . . 17
⊢ ((2
∈ ℂ ∧ 𝑁
∈ ℂ) → ((2 · 𝑁)↑2) = ((2↑2) · (𝑁↑2))) |
187 | 184, 185,
186 | sylancr 414 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((2 · 𝑁)↑2) = ((2↑2) · (𝑁↑2))) |
188 | | sq2 10650 |
. . . . . . . . . . . . . . . . 17
⊢
(2↑2) = 4 |
189 | 188 | oveq1i 5907 |
. . . . . . . . . . . . . . . 16
⊢
((2↑2) · (𝑁↑2)) = (4 · (𝑁↑2)) |
190 | 187, 189 | eqtrdi 2238 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((2 · 𝑁)↑2) = (4 · (𝑁↑2))) |
191 | 183, 190 | breqtrrd 4046 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) < ((2 · 𝑁)↑2)) |
192 | 137, 152,
143, 174, 191 | lelttrd 8113 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) < ((2 · 𝑁)↑2)) |
193 | 145 | nnrpd 9726 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (2 · 𝑁)) ∈
ℝ+) |
194 | 143, 193 | ltaddrpd 9762 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((2 · 𝑁)↑2) < (((2 · 𝑁)↑2) + (2 · (2
· 𝑁)))) |
195 | 137, 143,
147, 192, 194 | lttrd 8114 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) < (((2 · 𝑁)↑2) + (2 · (2
· 𝑁)))) |
196 | 137, 147,
148, 195 | ltadd1dd 8544 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) < ((((2 · 𝑁)↑2) + (2 · (2
· 𝑁))) +
1)) |
197 | 3 | 3ad2ant1 1020 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 = ((2 · 𝑁) + 1)) |
198 | 197 | oveq1d 5912 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃↑2) = (((2 · 𝑁) + 1)↑2)) |
199 | 113 | sqvald 10685 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃↑2) = (𝑃 · 𝑃)) |
200 | 141 | nncnd 8964 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · 𝑁) ∈ ℂ) |
201 | | binom21 10667 |
. . . . . . . . . . . . 13
⊢ ((2
· 𝑁) ∈ ℂ
→ (((2 · 𝑁) +
1)↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1)) |
202 | 200, 201 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · (2
· 𝑁))) +
1)) |
203 | 198, 199,
202 | 3eqtr3d 2230 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 · 𝑃) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1)) |
204 | 196, 203 | breqtrrd 4046 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) < (𝑃 · 𝑃)) |
205 | 119 | nnred 8963 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) ∈
ℝ) |
206 | | ltdivmul 8864 |
. . . . . . . . . . 11
⊢
(((((𝑚↑2) +
(𝑛↑2)) + 1) ∈
ℝ ∧ 𝑃 ∈
ℝ ∧ (𝑃 ∈
ℝ ∧ 0 < 𝑃))
→ (((((𝑚↑2) +
(𝑛↑2)) + 1) / 𝑃) < 𝑃 ↔ (((𝑚↑2) + (𝑛↑2)) + 1) < (𝑃 · 𝑃))) |
207 | 205, 68, 68, 78, 206 | syl112anc 1253 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) < 𝑃 ↔ (((𝑚↑2) + (𝑛↑2)) + 1) < (𝑃 · 𝑃))) |
208 | 204, 207 | mpbird 167 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) < 𝑃) |
209 | | 1z 9310 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
210 | | elfzm11 10123 |
. . . . . . . . . 10
⊢ ((1
∈ ℤ ∧ 𝑃
∈ ℤ) → (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ (1...(𝑃 − 1)) ↔ (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ ∧ 1 ≤ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∧ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) < 𝑃))) |
211 | 209, 84, 210 | sylancr 414 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ (1...(𝑃 − 1)) ↔ (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ ∧ 1 ≤ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∧ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) < 𝑃))) |
212 | 127, 136,
208, 211 | mpbir3and 1182 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ (1...(𝑃 − 1))) |
213 | | gzreim 12414 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 + (i · 𝑛)) ∈
ℤ[i]) |
214 | 95, 74, 213 | syl2anc 411 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚 + (i · 𝑛)) ∈ ℤ[i]) |
215 | | gzcn 12407 |
. . . . . . . . . . . . 13
⊢ ((𝑚 + (i · 𝑛)) ∈ ℤ[i] →
(𝑚 + (i · 𝑛)) ∈
ℂ) |
216 | 214, 215 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚 + (i · 𝑛)) ∈ ℂ) |
217 | 216 | absvalsq2d 11227 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((abs‘(𝑚 + (i · 𝑛)))↑2) = (((ℜ‘(𝑚 + (i · 𝑛)))↑2) +
((ℑ‘(𝑚 + (i
· 𝑛)))↑2))) |
218 | 156, 164 | crred 11020 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (ℜ‘(𝑚 + (i · 𝑛))) = 𝑚) |
219 | 218 | oveq1d 5912 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((ℜ‘(𝑚 + (i · 𝑛)))↑2) = (𝑚↑2)) |
220 | 156, 164 | crimd 11021 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (ℑ‘(𝑚 + (i · 𝑛))) = 𝑛) |
221 | 220 | oveq1d 5912 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((ℑ‘(𝑚 + (i · 𝑛)))↑2) = (𝑛↑2)) |
222 | 219, 221 | oveq12d 5915 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((ℜ‘(𝑚 + (i · 𝑛)))↑2) +
((ℑ‘(𝑚 + (i
· 𝑛)))↑2)) =
((𝑚↑2) + (𝑛↑2))) |
223 | 217, 222 | eqtrd 2222 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((abs‘(𝑚 + (i · 𝑛)))↑2) = ((𝑚↑2) + (𝑛↑2))) |
224 | 223 | oveq1d 5912 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((abs‘(𝑚 + (i · 𝑛)))↑2) + 1) = (((𝑚↑2) + (𝑛↑2)) + 1)) |
225 | 119 | nncnd 8964 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) ∈
ℂ) |
226 | 64 | nnap0d 8996 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 # 0) |
227 | 225, 113,
226 | divcanap1d 8779 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃) = (((𝑚↑2) + (𝑛↑2)) + 1)) |
228 | 224, 227 | eqtr4d 2225 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((abs‘(𝑚 + (i · 𝑛)))↑2) + 1) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃)) |
229 | | oveq1 5904 |
. . . . . . . . . 10
⊢ (𝑘 = ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) → (𝑘 · 𝑃) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃)) |
230 | 229 | eqeq2d 2201 |
. . . . . . . . 9
⊢ (𝑘 = ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) → ((((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃) ↔ (((abs‘𝑢)↑2) + 1) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃))) |
231 | | fveq2 5534 |
. . . . . . . . . . . 12
⊢ (𝑢 = (𝑚 + (i · 𝑛)) → (abs‘𝑢) = (abs‘(𝑚 + (i · 𝑛)))) |
232 | 231 | oveq1d 5912 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝑚 + (i · 𝑛)) → ((abs‘𝑢)↑2) = ((abs‘(𝑚 + (i · 𝑛)))↑2)) |
233 | 232 | oveq1d 5912 |
. . . . . . . . . 10
⊢ (𝑢 = (𝑚 + (i · 𝑛)) → (((abs‘𝑢)↑2) + 1) = (((abs‘(𝑚 + (i · 𝑛)))↑2) +
1)) |
234 | 233 | eqeq1d 2198 |
. . . . . . . . 9
⊢ (𝑢 = (𝑚 + (i · 𝑛)) → ((((abs‘𝑢)↑2) + 1) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃) ↔ (((abs‘(𝑚 + (i · 𝑛)))↑2) + 1) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃))) |
235 | 230, 234 | rspc2ev 2871 |
. . . . . . . 8
⊢
((((((𝑚↑2) +
(𝑛↑2)) + 1) / 𝑃) ∈ (1...(𝑃 − 1)) ∧ (𝑚 + (i · 𝑛)) ∈ ℤ[i] ∧
(((abs‘(𝑚 + (i
· 𝑛)))↑2) + 1)
= (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃)) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) |
236 | 212, 214,
228, 235 | syl3anc 1249 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) |
237 | 236 | 3expia 1207 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))) |
238 | 53, 237 | syl5 32 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁))) → ((𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))) |
239 | 238 | rexlimdvva 2615 |
. . . 4
⊢ (𝜑 → (∃𝑚 ∈ (0...𝑁)∃𝑛 ∈ (0...𝑁)(𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))) |
240 | 52, 239 | sylbid 150 |
. . 3
⊢ (𝜑 → (𝑗 ∈ (𝐴 ∩ ran 𝐹) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))) |
241 | 240 | exlimdv 1830 |
. 2
⊢ (𝜑 → (∃𝑗 𝑗 ∈ (𝐴 ∩ ran 𝐹) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))) |
242 | 13, 241 | mpd 13 |
1
⊢ (𝜑 → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) |