| Step | Hyp | Ref
| Expression |
| 1 | | 4sqlem11.1 |
. . . 4
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} |
| 2 | | 4sq.2 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 3 | | 4sq.3 |
. . . 4
⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) |
| 4 | | 4sq.4 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 5 | | 4sqlem11.5 |
. . . 4
⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} |
| 6 | | 4sqlem11.6 |
. . . 4
⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) |
| 7 | 1, 2, 3, 4, 5, 6 | 4sqlem11 12570 |
. . 3
⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ≠ ∅) |
| 8 | | prmnn 12278 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 9 | 4, 8 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 10 | 2, 9, 5, 6 | 4sqleminfi 12566 |
. . . 4
⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ∈ Fin) |
| 11 | | fin0 6946 |
. . . 4
⊢ ((𝐴 ∩ ran 𝐹) ∈ Fin → ((𝐴 ∩ ran 𝐹) ≠ ∅ ↔ ∃𝑗 𝑗 ∈ (𝐴 ∩ ran 𝐹))) |
| 12 | 10, 11 | syl 14 |
. . 3
⊢ (𝜑 → ((𝐴 ∩ ran 𝐹) ≠ ∅ ↔ ∃𝑗 𝑗 ∈ (𝐴 ∩ ran 𝐹))) |
| 13 | 7, 12 | mpbid 147 |
. 2
⊢ (𝜑 → ∃𝑗 𝑗 ∈ (𝐴 ∩ ran 𝐹)) |
| 14 | | vex 2766 |
. . . . . . . 8
⊢ 𝑗 ∈ V |
| 15 | | eqeq1 2203 |
. . . . . . . . 9
⊢ (𝑢 = 𝑗 → (𝑢 = ((𝑚↑2) mod 𝑃) ↔ 𝑗 = ((𝑚↑2) mod 𝑃))) |
| 16 | 15 | rexbidv 2498 |
. . . . . . . 8
⊢ (𝑢 = 𝑗 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) ↔ ∃𝑚 ∈ (0...𝑁)𝑗 = ((𝑚↑2) mod 𝑃))) |
| 17 | 14, 16, 5 | elab2 2912 |
. . . . . . 7
⊢ (𝑗 ∈ 𝐴 ↔ ∃𝑚 ∈ (0...𝑁)𝑗 = ((𝑚↑2) mod 𝑃)) |
| 18 | 17 | a1i 9 |
. . . . . 6
⊢ (𝜑 → (𝑗 ∈ 𝐴 ↔ ∃𝑚 ∈ (0...𝑁)𝑗 = ((𝑚↑2) mod 𝑃))) |
| 19 | | abid 2184 |
. . . . . . . . 9
⊢ (𝑗 ∈ {𝑗 ∣ ∃𝑣 ∈ 𝐴 𝑗 = ((𝑃 − 1) − 𝑣)} ↔ ∃𝑣 ∈ 𝐴 𝑗 = ((𝑃 − 1) − 𝑣)) |
| 20 | 5 | rexeqi 2698 |
. . . . . . . . 9
⊢
(∃𝑣 ∈
𝐴 𝑗 = ((𝑃 − 1) − 𝑣) ↔ ∃𝑣 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}𝑗 = ((𝑃 − 1) − 𝑣)) |
| 21 | | oveq1 5929 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑛 → (𝑚↑2) = (𝑛↑2)) |
| 22 | 21 | oveq1d 5937 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑛 → ((𝑚↑2) mod 𝑃) = ((𝑛↑2) mod 𝑃)) |
| 23 | 22 | eqeq2d 2208 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (𝑢 = ((𝑚↑2) mod 𝑃) ↔ 𝑢 = ((𝑛↑2) mod 𝑃))) |
| 24 | 23 | cbvrexvw 2734 |
. . . . . . . . . . 11
⊢
(∃𝑚 ∈
(0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) ↔ ∃𝑛 ∈ (0...𝑁)𝑢 = ((𝑛↑2) mod 𝑃)) |
| 25 | | eqeq1 2203 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑣 → (𝑢 = ((𝑛↑2) mod 𝑃) ↔ 𝑣 = ((𝑛↑2) mod 𝑃))) |
| 26 | 25 | rexbidv 2498 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑣 → (∃𝑛 ∈ (0...𝑁)𝑢 = ((𝑛↑2) mod 𝑃) ↔ ∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃))) |
| 27 | 24, 26 | bitrid 192 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑣 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) ↔ ∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃))) |
| 28 | 27 | rexab 2926 |
. . . . . . . . 9
⊢
(∃𝑣 ∈
{𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}𝑗 = ((𝑃 − 1) − 𝑣) ↔ ∃𝑣(∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣))) |
| 29 | 19, 20, 28 | 3bitri 206 |
. . . . . . . 8
⊢ (𝑗 ∈ {𝑗 ∣ ∃𝑣 ∈ 𝐴 𝑗 = ((𝑃 − 1) − 𝑣)} ↔ ∃𝑣(∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣))) |
| 30 | 6 | rnmpt 4914 |
. . . . . . . . 9
⊢ ran 𝐹 = {𝑗 ∣ ∃𝑣 ∈ 𝐴 𝑗 = ((𝑃 − 1) − 𝑣)} |
| 31 | 30 | eleq2i 2263 |
. . . . . . . 8
⊢ (𝑗 ∈ ran 𝐹 ↔ 𝑗 ∈ {𝑗 ∣ ∃𝑣 ∈ 𝐴 𝑗 = ((𝑃 − 1) − 𝑣)}) |
| 32 | | rexcom4 2786 |
. . . . . . . . 9
⊢
(∃𝑛 ∈
(0...𝑁)∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ ∃𝑣∃𝑛 ∈ (0...𝑁)(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣))) |
| 33 | | r19.41v 2653 |
. . . . . . . . . 10
⊢
(∃𝑛 ∈
(0...𝑁)(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ (∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣))) |
| 34 | 33 | exbii 1619 |
. . . . . . . . 9
⊢
(∃𝑣∃𝑛 ∈ (0...𝑁)(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ ∃𝑣(∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣))) |
| 35 | 32, 34 | bitri 184 |
. . . . . . . 8
⊢
(∃𝑛 ∈
(0...𝑁)∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ ∃𝑣(∃𝑛 ∈ (0...𝑁)𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣))) |
| 36 | 29, 31, 35 | 3bitr4i 212 |
. . . . . . 7
⊢ (𝑗 ∈ ran 𝐹 ↔ ∃𝑛 ∈ (0...𝑁)∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣))) |
| 37 | | elfzelz 10100 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (0...𝑁) → 𝑛 ∈ ℤ) |
| 38 | 37 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → 𝑛 ∈ ℤ) |
| 39 | | zsqcl 10702 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ → (𝑛↑2) ∈
ℤ) |
| 40 | 38, 39 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → (𝑛↑2) ∈ ℤ) |
| 41 | 9 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → 𝑃 ∈ ℕ) |
| 42 | 40, 41 | zmodcld 10437 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → ((𝑛↑2) mod 𝑃) ∈
ℕ0) |
| 43 | | oveq2 5930 |
. . . . . . . . . . 11
⊢ (𝑣 = ((𝑛↑2) mod 𝑃) → ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) |
| 44 | 43 | eqeq2d 2208 |
. . . . . . . . . 10
⊢ (𝑣 = ((𝑛↑2) mod 𝑃) → (𝑗 = ((𝑃 − 1) − 𝑣) ↔ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))) |
| 45 | 44 | ceqsexgv 2893 |
. . . . . . . . 9
⊢ (((𝑛↑2) mod 𝑃) ∈ ℕ0 →
(∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))) |
| 46 | 42, 45 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → (∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))) |
| 47 | 46 | rexbidva 2494 |
. . . . . . 7
⊢ (𝜑 → (∃𝑛 ∈ (0...𝑁)∃𝑣(𝑣 = ((𝑛↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − 𝑣)) ↔ ∃𝑛 ∈ (0...𝑁)𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))) |
| 48 | 36, 47 | bitrid 192 |
. . . . . 6
⊢ (𝜑 → (𝑗 ∈ ran 𝐹 ↔ ∃𝑛 ∈ (0...𝑁)𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))) |
| 49 | 18, 48 | anbi12d 473 |
. . . . 5
⊢ (𝜑 → ((𝑗 ∈ 𝐴 ∧ 𝑗 ∈ ran 𝐹) ↔ (∃𝑚 ∈ (0...𝑁)𝑗 = ((𝑚↑2) mod 𝑃) ∧ ∃𝑛 ∈ (0...𝑁)𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))))) |
| 50 | | elin 3346 |
. . . . 5
⊢ (𝑗 ∈ (𝐴 ∩ ran 𝐹) ↔ (𝑗 ∈ 𝐴 ∧ 𝑗 ∈ ran 𝐹)) |
| 51 | | reeanv 2667 |
. . . . 5
⊢
(∃𝑚 ∈
(0...𝑁)∃𝑛 ∈ (0...𝑁)(𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) ↔ (∃𝑚 ∈ (0...𝑁)𝑗 = ((𝑚↑2) mod 𝑃) ∧ ∃𝑛 ∈ (0...𝑁)𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)))) |
| 52 | 49, 50, 51 | 3bitr4g 223 |
. . . 4
⊢ (𝜑 → (𝑗 ∈ (𝐴 ∩ ran 𝐹) ↔ ∃𝑚 ∈ (0...𝑁)∃𝑛 ∈ (0...𝑁)(𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))))) |
| 53 | | eqtr2 2215 |
. . . . . 6
⊢ ((𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) |
| 54 | 9 | nnzd 9447 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 55 | | peano2zm 9364 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ ℤ → (𝑃 − 1) ∈
ℤ) |
| 56 | 54, 55 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑃 − 1) ∈ ℤ) |
| 57 | | zq 9700 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 − 1) ∈ ℤ
→ (𝑃 − 1) ∈
ℚ) |
| 58 | 56, 57 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑃 − 1) ∈ ℚ) |
| 59 | 58 | 3ad2ant1 1020 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) ∈ ℚ) |
| 60 | | zq 9700 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ ℤ → 𝑃 ∈
ℚ) |
| 61 | 54, 60 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 ∈ ℚ) |
| 62 | 61 | 3ad2ant1 1020 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℚ) |
| 63 | 4 | 3ad2ant1 1020 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℙ) |
| 64 | 63, 8 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℕ) |
| 65 | | nnm1nn0 9290 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈
ℕ0) |
| 66 | 64, 65 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) ∈
ℕ0) |
| 67 | 66 | nn0ge0d 9305 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 ≤ (𝑃 − 1)) |
| 68 | 64 | nnred 9003 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℝ) |
| 69 | 68 | ltm1d 8959 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) < 𝑃) |
| 70 | | modqid 10441 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑃 − 1) ∈ ℚ ∧
𝑃 ∈ ℚ) ∧ (0
≤ (𝑃 − 1) ∧
(𝑃 − 1) < 𝑃)) → ((𝑃 − 1) mod 𝑃) = (𝑃 − 1)) |
| 71 | 59, 62, 67, 69, 70 | syl22anc 1250 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑃 − 1) mod 𝑃) = (𝑃 − 1)) |
| 72 | 71 | oveq1d 5937 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑃 − 1) mod 𝑃) − ((𝑛↑2) mod 𝑃)) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) |
| 73 | | simp2r 1026 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑛 ∈ (0...𝑁)) |
| 74 | 73 | elfzelzd 10101 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑛 ∈ ℤ) |
| 75 | 74, 39 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ∈ ℤ) |
| 76 | | zq 9700 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛↑2) ∈ ℤ →
(𝑛↑2) ∈
ℚ) |
| 77 | 75, 76 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ∈ ℚ) |
| 78 | 64 | nngt0d 9034 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 < 𝑃) |
| 79 | | modqlt 10425 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑛↑2) ∈ ℚ ∧
𝑃 ∈ ℚ ∧ 0
< 𝑃) → ((𝑛↑2) mod 𝑃) < 𝑃) |
| 80 | 77, 62, 78, 79 | syl3anc 1249 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) < 𝑃) |
| 81 | 75, 64 | zmodcld 10437 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) ∈
ℕ0) |
| 82 | 81 | nn0zd 9446 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) ∈ ℤ) |
| 83 | | prmz 12279 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
| 84 | 63, 83 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℤ) |
| 85 | | zltlem1 9383 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛↑2) mod 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑛↑2) mod 𝑃) < 𝑃 ↔ ((𝑛↑2) mod 𝑃) ≤ (𝑃 − 1))) |
| 86 | 82, 84, 85 | syl2anc 411 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑛↑2) mod 𝑃) < 𝑃 ↔ ((𝑛↑2) mod 𝑃) ≤ (𝑃 − 1))) |
| 87 | 80, 86 | mpbid 147 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) ≤ (𝑃 − 1)) |
| 88 | 87, 71 | breqtrrd 4061 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑛↑2) mod 𝑃) ≤ ((𝑃 − 1) mod 𝑃)) |
| 89 | | modqsubdir 10485 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑃 − 1) ∈ ℚ ∧
(𝑛↑2) ∈ ℚ)
∧ (𝑃 ∈ ℚ
∧ 0 < 𝑃)) →
(((𝑛↑2) mod 𝑃) ≤ ((𝑃 − 1) mod 𝑃) ↔ (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) = (((𝑃 − 1) mod 𝑃) − ((𝑛↑2) mod 𝑃)))) |
| 90 | 59, 77, 62, 78, 89 | syl22anc 1250 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑛↑2) mod 𝑃) ≤ ((𝑃 − 1) mod 𝑃) ↔ (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) = (((𝑃 − 1) mod 𝑃) − ((𝑛↑2) mod 𝑃)))) |
| 91 | 88, 90 | mpbid 147 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) = (((𝑃 − 1) mod 𝑃) − ((𝑛↑2) mod 𝑃))) |
| 92 | | simp3 1001 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) |
| 93 | 72, 91, 92 | 3eqtr4rd 2240 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) mod 𝑃) = (((𝑃 − 1) − (𝑛↑2)) mod 𝑃)) |
| 94 | | simp2l 1025 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑚 ∈ (0...𝑁)) |
| 95 | 94 | elfzelzd 10101 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑚 ∈ ℤ) |
| 96 | | zsqcl 10702 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℤ → (𝑚↑2) ∈
ℤ) |
| 97 | 95, 96 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ∈ ℤ) |
| 98 | 66 | nn0zd 9446 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) ∈ ℤ) |
| 99 | 98, 75 | zsubcld 9453 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑃 − 1) − (𝑛↑2)) ∈ ℤ) |
| 100 | | moddvds 11964 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℕ ∧ (𝑚↑2) ∈ ℤ ∧
((𝑃 − 1) −
(𝑛↑2)) ∈ ℤ)
→ (((𝑚↑2) mod
𝑃) = (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2))))) |
| 101 | 64, 97, 99, 100 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) mod 𝑃) = (((𝑃 − 1) − (𝑛↑2)) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2))))) |
| 102 | 93, 101 | mpbid 147 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∥ ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2)))) |
| 103 | | zsqcl2 10709 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℤ → (𝑚↑2) ∈
ℕ0) |
| 104 | 95, 103 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ∈
ℕ0) |
| 105 | 104 | nn0cnd 9304 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ∈ ℂ) |
| 106 | 66 | nn0cnd 9304 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 − 1) ∈ ℂ) |
| 107 | | zsqcl2 10709 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℤ → (𝑛↑2) ∈
ℕ0) |
| 108 | 74, 107 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ∈
ℕ0) |
| 109 | 108 | nn0cnd 9304 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ∈ ℂ) |
| 110 | 105, 106,
109 | subsub3d 8367 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2))) = (((𝑚↑2) + (𝑛↑2)) − (𝑃 − 1))) |
| 111 | 104, 108 | nn0addcld 9306 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ∈
ℕ0) |
| 112 | 111 | nn0cnd 9304 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ∈ ℂ) |
| 113 | 64 | nncnd 9004 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∈ ℂ) |
| 114 | | 1cnd 8042 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 1 ∈
ℂ) |
| 115 | 112, 113,
114 | subsub3d 8367 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) − (𝑃 − 1)) = ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃)) |
| 116 | 110, 115 | eqtrd 2229 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) − ((𝑃 − 1) − (𝑛↑2))) = ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃)) |
| 117 | 102, 116 | breqtrd 4059 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∥ ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃)) |
| 118 | | nn0p1nn 9288 |
. . . . . . . . . . . . . 14
⊢ (((𝑚↑2) + (𝑛↑2)) ∈ ℕ0 →
(((𝑚↑2) + (𝑛↑2)) + 1) ∈
ℕ) |
| 119 | 111, 118 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) ∈
ℕ) |
| 120 | 119 | nnzd 9447 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) ∈
ℤ) |
| 121 | | dvdssubr 12004 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℤ ∧ (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℤ) → (𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1) ↔ 𝑃 ∥ ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃))) |
| 122 | 84, 120, 121 | syl2anc 411 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1) ↔ 𝑃 ∥ ((((𝑚↑2) + (𝑛↑2)) + 1) − 𝑃))) |
| 123 | 117, 122 | mpbird 167 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1)) |
| 124 | 64 | nnne0d 9035 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 ≠ 0) |
| 125 | | dvdsval2 11955 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ (((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℤ) → (𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1) ↔ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ)) |
| 126 | 84, 124, 120, 125 | syl3anc 1249 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 ∥ (((𝑚↑2) + (𝑛↑2)) + 1) ↔ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ)) |
| 127 | 123, 126 | mpbid 147 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ) |
| 128 | | nnrp 9738 |
. . . . . . . . . . . . . 14
⊢ ((((𝑚↑2) + (𝑛↑2)) + 1) ∈ ℕ → (((𝑚↑2) + (𝑛↑2)) + 1) ∈
ℝ+) |
| 129 | | nnrp 9738 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℝ+) |
| 130 | | rpdivcl 9754 |
. . . . . . . . . . . . . 14
⊢
(((((𝑚↑2) +
(𝑛↑2)) + 1) ∈
ℝ+ ∧ 𝑃
∈ ℝ+) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈
ℝ+) |
| 131 | 128, 129,
130 | syl2an 289 |
. . . . . . . . . . . . 13
⊢
(((((𝑚↑2) +
(𝑛↑2)) + 1) ∈
ℕ ∧ 𝑃 ∈
ℕ) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈
ℝ+) |
| 132 | 119, 64, 131 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈
ℝ+) |
| 133 | 132 | rpgt0d 9774 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 < ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃)) |
| 134 | | elnnz 9336 |
. . . . . . . . . . 11
⊢
(((((𝑚↑2) +
(𝑛↑2)) + 1) / 𝑃) ∈ ℕ ↔
(((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ ∧ 0 <
((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃))) |
| 135 | 127, 133,
134 | sylanbrc 417 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℕ) |
| 136 | 135 | nnge1d 9033 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 1 ≤ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃)) |
| 137 | 111 | nn0red 9303 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ∈ ℝ) |
| 138 | | 2nn 9152 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℕ |
| 139 | 2 | 3ad2ant1 1020 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑁 ∈ ℕ) |
| 140 | | nnmulcl 9011 |
. . . . . . . . . . . . . . . 16
⊢ ((2
∈ ℕ ∧ 𝑁
∈ ℕ) → (2 · 𝑁) ∈ ℕ) |
| 141 | 138, 139,
140 | sylancr 414 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · 𝑁) ∈ ℕ) |
| 142 | 141 | nnred 9003 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · 𝑁) ∈ ℝ) |
| 143 | 142 | resqcld 10791 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((2 · 𝑁)↑2) ∈ ℝ) |
| 144 | | nnmulcl 9011 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℕ ∧ (2 · 𝑁) ∈ ℕ) → (2 · (2
· 𝑁)) ∈
ℕ) |
| 145 | 138, 141,
144 | sylancr 414 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (2 · 𝑁)) ∈
ℕ) |
| 146 | 145 | nnred 9003 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (2 · 𝑁)) ∈
ℝ) |
| 147 | 143, 146 | readdcld 8056 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) ∈
ℝ) |
| 148 | | 1red 8041 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 1 ∈
ℝ) |
| 149 | 139 | nnsqcld 10786 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑁↑2) ∈ ℕ) |
| 150 | | nnmulcl 9011 |
. . . . . . . . . . . . . . . 16
⊢ ((2
∈ ℕ ∧ (𝑁↑2) ∈ ℕ) → (2 ·
(𝑁↑2)) ∈
ℕ) |
| 151 | 138, 149,
150 | sylancr 414 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) ∈ ℕ) |
| 152 | 151 | nnred 9003 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) ∈ ℝ) |
| 153 | 104 | nn0red 9303 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ∈ ℝ) |
| 154 | 108 | nn0red 9303 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ∈ ℝ) |
| 155 | 149 | nnred 9003 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑁↑2) ∈ ℝ) |
| 156 | 95 | zred 9448 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑚 ∈ ℝ) |
| 157 | | elfzle1 10102 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ (0...𝑁) → 0 ≤ 𝑚) |
| 158 | 94, 157 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 ≤ 𝑚) |
| 159 | 139 | nnred 9003 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑁 ∈ ℝ) |
| 160 | | elfzle2 10103 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ (0...𝑁) → 𝑚 ≤ 𝑁) |
| 161 | 94, 160 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑚 ≤ 𝑁) |
| 162 | | le2sq2 10707 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ℝ ∧ 0 ≤
𝑚) ∧ (𝑁 ∈ ℝ ∧ 𝑚 ≤ 𝑁)) → (𝑚↑2) ≤ (𝑁↑2)) |
| 163 | 156, 158,
159, 161, 162 | syl22anc 1250 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚↑2) ≤ (𝑁↑2)) |
| 164 | 74 | zred 9448 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑛 ∈ ℝ) |
| 165 | | elfzle1 10102 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (0...𝑁) → 0 ≤ 𝑛) |
| 166 | 73, 165 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 ≤ 𝑛) |
| 167 | | elfzle2 10103 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (0...𝑁) → 𝑛 ≤ 𝑁) |
| 168 | 73, 167 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑛 ≤ 𝑁) |
| 169 | | le2sq2 10707 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ ℝ ∧ 0 ≤
𝑛) ∧ (𝑁 ∈ ℝ ∧ 𝑛 ≤ 𝑁)) → (𝑛↑2) ≤ (𝑁↑2)) |
| 170 | 164, 166,
159, 168, 169 | syl22anc 1250 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑛↑2) ≤ (𝑁↑2)) |
| 171 | 153, 154,
155, 155, 163, 170 | le2addd 8590 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ≤ ((𝑁↑2) + (𝑁↑2))) |
| 172 | 149 | nncnd 9004 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑁↑2) ∈ ℂ) |
| 173 | 172 | 2timesd 9234 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) = ((𝑁↑2) + (𝑁↑2))) |
| 174 | 171, 173 | breqtrrd 4061 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) ≤ (2 · (𝑁↑2))) |
| 175 | | 2lt4 9164 |
. . . . . . . . . . . . . . . 16
⊢ 2 <
4 |
| 176 | | 2re 9060 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℝ |
| 177 | 176 | a1i 9 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 2 ∈
ℝ) |
| 178 | | 4re 9067 |
. . . . . . . . . . . . . . . . . 18
⊢ 4 ∈
ℝ |
| 179 | 178 | a1i 9 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 4 ∈
ℝ) |
| 180 | 149 | nngt0d 9034 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 0 < (𝑁↑2)) |
| 181 | | ltmul1 8619 |
. . . . . . . . . . . . . . . . 17
⊢ ((2
∈ ℝ ∧ 4 ∈ ℝ ∧ ((𝑁↑2) ∈ ℝ ∧ 0 < (𝑁↑2))) → (2 < 4
↔ (2 · (𝑁↑2)) < (4 · (𝑁↑2)))) |
| 182 | 177, 179,
155, 180, 181 | syl112anc 1253 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 < 4 ↔ (2 ·
(𝑁↑2)) < (4
· (𝑁↑2)))) |
| 183 | 175, 182 | mpbii 148 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) < (4 · (𝑁↑2))) |
| 184 | | 2cn 9061 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℂ |
| 185 | 139 | nncnd 9004 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑁 ∈ ℂ) |
| 186 | | sqmul 10693 |
. . . . . . . . . . . . . . . . 17
⊢ ((2
∈ ℂ ∧ 𝑁
∈ ℂ) → ((2 · 𝑁)↑2) = ((2↑2) · (𝑁↑2))) |
| 187 | 184, 185,
186 | sylancr 414 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((2 · 𝑁)↑2) = ((2↑2) · (𝑁↑2))) |
| 188 | | sq2 10727 |
. . . . . . . . . . . . . . . . 17
⊢
(2↑2) = 4 |
| 189 | 188 | oveq1i 5932 |
. . . . . . . . . . . . . . . 16
⊢
((2↑2) · (𝑁↑2)) = (4 · (𝑁↑2)) |
| 190 | 187, 189 | eqtrdi 2245 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((2 · 𝑁)↑2) = (4 · (𝑁↑2))) |
| 191 | 183, 190 | breqtrrd 4061 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (𝑁↑2)) < ((2 · 𝑁)↑2)) |
| 192 | 137, 152,
143, 174, 191 | lelttrd 8151 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) < ((2 · 𝑁)↑2)) |
| 193 | 145 | nnrpd 9769 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · (2 · 𝑁)) ∈
ℝ+) |
| 194 | 143, 193 | ltaddrpd 9805 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((2 · 𝑁)↑2) < (((2 · 𝑁)↑2) + (2 · (2
· 𝑁)))) |
| 195 | 137, 143,
147, 192, 194 | lttrd 8152 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((𝑚↑2) + (𝑛↑2)) < (((2 · 𝑁)↑2) + (2 · (2
· 𝑁)))) |
| 196 | 137, 147,
148, 195 | ltadd1dd 8583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) < ((((2 · 𝑁)↑2) + (2 · (2
· 𝑁))) +
1)) |
| 197 | 3 | 3ad2ant1 1020 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 = ((2 · 𝑁) + 1)) |
| 198 | 197 | oveq1d 5937 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃↑2) = (((2 · 𝑁) + 1)↑2)) |
| 199 | 113 | sqvald 10762 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃↑2) = (𝑃 · 𝑃)) |
| 200 | 141 | nncnd 9004 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (2 · 𝑁) ∈ ℂ) |
| 201 | | binom21 10744 |
. . . . . . . . . . . . 13
⊢ ((2
· 𝑁) ∈ ℂ
→ (((2 · 𝑁) +
1)↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1)) |
| 202 | 200, 201 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · (2
· 𝑁))) +
1)) |
| 203 | 198, 199,
202 | 3eqtr3d 2237 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑃 · 𝑃) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1)) |
| 204 | 196, 203 | breqtrrd 4061 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) < (𝑃 · 𝑃)) |
| 205 | 119 | nnred 9003 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) ∈
ℝ) |
| 206 | | ltdivmul 8903 |
. . . . . . . . . . 11
⊢
(((((𝑚↑2) +
(𝑛↑2)) + 1) ∈
ℝ ∧ 𝑃 ∈
ℝ ∧ (𝑃 ∈
ℝ ∧ 0 < 𝑃))
→ (((((𝑚↑2) +
(𝑛↑2)) + 1) / 𝑃) < 𝑃 ↔ (((𝑚↑2) + (𝑛↑2)) + 1) < (𝑃 · 𝑃))) |
| 207 | 205, 68, 68, 78, 206 | syl112anc 1253 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) < 𝑃 ↔ (((𝑚↑2) + (𝑛↑2)) + 1) < (𝑃 · 𝑃))) |
| 208 | 204, 207 | mpbird 167 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) < 𝑃) |
| 209 | | 1z 9352 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
| 210 | | elfzm11 10166 |
. . . . . . . . . 10
⊢ ((1
∈ ℤ ∧ 𝑃
∈ ℤ) → (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ (1...(𝑃 − 1)) ↔ (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ ∧ 1 ≤ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∧ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) < 𝑃))) |
| 211 | 209, 84, 210 | sylancr 414 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ (1...(𝑃 − 1)) ↔ (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ ℤ ∧ 1 ≤ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∧ ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) < 𝑃))) |
| 212 | 127, 136,
208, 211 | mpbir3and 1182 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) ∈ (1...(𝑃 − 1))) |
| 213 | | gzreim 12548 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 + (i · 𝑛)) ∈
ℤ[i]) |
| 214 | 95, 74, 213 | syl2anc 411 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚 + (i · 𝑛)) ∈ ℤ[i]) |
| 215 | | gzcn 12541 |
. . . . . . . . . . . . 13
⊢ ((𝑚 + (i · 𝑛)) ∈ ℤ[i] →
(𝑚 + (i · 𝑛)) ∈
ℂ) |
| 216 | 214, 215 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (𝑚 + (i · 𝑛)) ∈ ℂ) |
| 217 | 216 | absvalsq2d 11348 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((abs‘(𝑚 + (i · 𝑛)))↑2) = (((ℜ‘(𝑚 + (i · 𝑛)))↑2) +
((ℑ‘(𝑚 + (i
· 𝑛)))↑2))) |
| 218 | 156, 164 | crred 11141 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (ℜ‘(𝑚 + (i · 𝑛))) = 𝑚) |
| 219 | 218 | oveq1d 5937 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((ℜ‘(𝑚 + (i · 𝑛)))↑2) = (𝑚↑2)) |
| 220 | 156, 164 | crimd 11142 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (ℑ‘(𝑚 + (i · 𝑛))) = 𝑛) |
| 221 | 220 | oveq1d 5937 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((ℑ‘(𝑚 + (i · 𝑛)))↑2) = (𝑛↑2)) |
| 222 | 219, 221 | oveq12d 5940 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((ℜ‘(𝑚 + (i · 𝑛)))↑2) +
((ℑ‘(𝑚 + (i
· 𝑛)))↑2)) =
((𝑚↑2) + (𝑛↑2))) |
| 223 | 217, 222 | eqtrd 2229 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ((abs‘(𝑚 + (i · 𝑛)))↑2) = ((𝑚↑2) + (𝑛↑2))) |
| 224 | 223 | oveq1d 5937 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((abs‘(𝑚 + (i · 𝑛)))↑2) + 1) = (((𝑚↑2) + (𝑛↑2)) + 1)) |
| 225 | 119 | nncnd 9004 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((𝑚↑2) + (𝑛↑2)) + 1) ∈
ℂ) |
| 226 | 64 | nnap0d 9036 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → 𝑃 # 0) |
| 227 | 225, 113,
226 | divcanap1d 8818 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃) = (((𝑚↑2) + (𝑛↑2)) + 1)) |
| 228 | 224, 227 | eqtr4d 2232 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → (((abs‘(𝑚 + (i · 𝑛)))↑2) + 1) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃)) |
| 229 | | oveq1 5929 |
. . . . . . . . . 10
⊢ (𝑘 = ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) → (𝑘 · 𝑃) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃)) |
| 230 | 229 | eqeq2d 2208 |
. . . . . . . . 9
⊢ (𝑘 = ((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) → ((((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃) ↔ (((abs‘𝑢)↑2) + 1) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃))) |
| 231 | | fveq2 5558 |
. . . . . . . . . . . 12
⊢ (𝑢 = (𝑚 + (i · 𝑛)) → (abs‘𝑢) = (abs‘(𝑚 + (i · 𝑛)))) |
| 232 | 231 | oveq1d 5937 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝑚 + (i · 𝑛)) → ((abs‘𝑢)↑2) = ((abs‘(𝑚 + (i · 𝑛)))↑2)) |
| 233 | 232 | oveq1d 5937 |
. . . . . . . . . 10
⊢ (𝑢 = (𝑚 + (i · 𝑛)) → (((abs‘𝑢)↑2) + 1) = (((abs‘(𝑚 + (i · 𝑛)))↑2) +
1)) |
| 234 | 233 | eqeq1d 2205 |
. . . . . . . . 9
⊢ (𝑢 = (𝑚 + (i · 𝑛)) → ((((abs‘𝑢)↑2) + 1) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃) ↔ (((abs‘(𝑚 + (i · 𝑛)))↑2) + 1) = (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃))) |
| 235 | 230, 234 | rspc2ev 2883 |
. . . . . . . 8
⊢
((((((𝑚↑2) +
(𝑛↑2)) + 1) / 𝑃) ∈ (1...(𝑃 − 1)) ∧ (𝑚 + (i · 𝑛)) ∈ ℤ[i] ∧
(((abs‘(𝑚 + (i
· 𝑛)))↑2) + 1)
= (((((𝑚↑2) + (𝑛↑2)) + 1) / 𝑃) · 𝑃)) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) |
| 236 | 212, 214,
228, 235 | syl3anc 1249 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁)) ∧ ((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) |
| 237 | 236 | 3expia 1207 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃)) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))) |
| 238 | 53, 237 | syl5 32 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...𝑁))) → ((𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))) |
| 239 | 238 | rexlimdvva 2622 |
. . . 4
⊢ (𝜑 → (∃𝑚 ∈ (0...𝑁)∃𝑛 ∈ (0...𝑁)(𝑗 = ((𝑚↑2) mod 𝑃) ∧ 𝑗 = ((𝑃 − 1) − ((𝑛↑2) mod 𝑃))) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))) |
| 240 | 52, 239 | sylbid 150 |
. . 3
⊢ (𝜑 → (𝑗 ∈ (𝐴 ∩ ran 𝐹) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))) |
| 241 | 240 | exlimdv 1833 |
. 2
⊢ (𝜑 → (∃𝑗 𝑗 ∈ (𝐴 ∩ ran 𝐹) → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))) |
| 242 | 13, 241 | mpd 13 |
1
⊢ (𝜑 → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) |