ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbov123g GIF version

Theorem csbov123g 5960
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
csbov123g (𝐴𝐷𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))

Proof of Theorem csbov123g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3087 . . 3 (𝑦 = 𝐴𝑦 / 𝑥(𝐵𝐹𝐶) = 𝐴 / 𝑥(𝐵𝐹𝐶))
2 csbeq1 3087 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3087 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
4 csbeq1 3087 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
52, 3, 4oveq123d 5943 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))
61, 5eqeq12d 2211 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐵𝐹𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶) ↔ 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)))
7 vex 2766 . . 3 𝑦 ∈ V
8 nfcsb1v 3117 . . . 4 𝑥𝑦 / 𝑥𝐵
9 nfcsb1v 3117 . . . 4 𝑥𝑦 / 𝑥𝐹
10 nfcsb1v 3117 . . . 4 𝑥𝑦 / 𝑥𝐶
118, 9, 10nfov 5952 . . 3 𝑥(𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)
12 csbeq1a 3093 . . . 4 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
13 csbeq1a 3093 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
14 csbeq1a 3093 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1512, 13, 14oveq123d 5943 . . 3 (𝑥 = 𝑦 → (𝐵𝐹𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶))
167, 11, 15csbief 3129 . 2 𝑦 / 𝑥(𝐵𝐹𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)
176, 16vtoclg 2824 1 (𝐴𝐷𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  csb 3084  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  csbov12g  5961
  Copyright terms: Public domain W3C validator