ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbov123g GIF version

Theorem csbov123g 5809
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
csbov123g (𝐴𝐷𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))

Proof of Theorem csbov123g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3006 . . 3 (𝑦 = 𝐴𝑦 / 𝑥(𝐵𝐹𝐶) = 𝐴 / 𝑥(𝐵𝐹𝐶))
2 csbeq1 3006 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3006 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
4 csbeq1 3006 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
52, 3, 4oveq123d 5795 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))
61, 5eqeq12d 2154 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐵𝐹𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶) ↔ 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)))
7 vex 2689 . . 3 𝑦 ∈ V
8 nfcsb1v 3035 . . . 4 𝑥𝑦 / 𝑥𝐵
9 nfcsb1v 3035 . . . 4 𝑥𝑦 / 𝑥𝐹
10 nfcsb1v 3035 . . . 4 𝑥𝑦 / 𝑥𝐶
118, 9, 10nfov 5801 . . 3 𝑥(𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)
12 csbeq1a 3012 . . . 4 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
13 csbeq1a 3012 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
14 csbeq1a 3012 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1512, 13, 14oveq123d 5795 . . 3 (𝑥 = 𝑦 → (𝐵𝐹𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶))
167, 11, 15csbief 3044 . 2 𝑦 / 𝑥(𝐵𝐹𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐹𝑦 / 𝑥𝐶)
176, 16vtoclg 2746 1 (𝐴𝐷𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  csb 3003  (class class class)co 5774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777
This theorem is referenced by:  csbov12g  5810
  Copyright terms: Public domain W3C validator