| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addassprg | GIF version | ||
| Description: Addition of positive reals is associative. Proposition 9-3.5(i) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| addassprg | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iplp 7537 | . 2 ⊢ +P = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦 +Q 𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦 +Q 𝑧))}〉) | |
| 2 | addclnq 7444 | . 2 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦 +Q 𝑧) ∈ Q) | |
| 3 | dmplp 7609 | . 2 ⊢ dom +P = (P × P) | |
| 4 | addclpr 7606 | . 2 ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓 +P 𝑔) ∈ P) | |
| 5 | addassnqg 7451 | . 2 ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q) → ((𝑓 +Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q ℎ))) | |
| 6 | 1, 2, 3, 4, 5 | genpassg 7595 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 (class class class)co 5923 +Q cplq 7351 Pcnp 7360 +P cpp 7362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-recs 6364 df-irdg 6429 df-1o 6475 df-2o 6476 df-oadd 6479 df-omul 6480 df-er 6593 df-ec 6595 df-qs 6599 df-ni 7373 df-pli 7374 df-mi 7375 df-lti 7376 df-plpq 7413 df-mpq 7414 df-enq 7416 df-nqqs 7417 df-plqqs 7418 df-mqqs 7419 df-1nqqs 7420 df-rq 7421 df-ltnqqs 7422 df-enq0 7493 df-nq0 7494 df-0nq0 7495 df-plq0 7496 df-mq0 7497 df-inp 7535 df-iplp 7537 |
| This theorem is referenced by: ltaprlem 7687 ltaprg 7688 caucvgprlemcanl 7713 caucvgprprlemexb 7776 caucvgprprlemaddq 7777 enrer 7804 addcmpblnr 7808 mulcmpblnrlemg 7809 ltsrprg 7816 addasssrg 7825 mulasssrg 7827 distrsrg 7828 m1p1sr 7829 m1m1sr 7830 lttrsr 7831 ltsosr 7833 0idsr 7836 1idsr 7837 ltasrg 7839 recexgt0sr 7842 mulgt0sr 7847 mulextsr1lem 7849 srpospr 7852 prsradd 7855 prsrlt 7856 map2psrprg 7874 pitonnlem1p1 7915 pitoregt0 7918 recidpirqlemcalc 7926 |
| Copyright terms: Public domain | W3C validator |