ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addassprg GIF version

Theorem addassprg 7501
Description: Addition of positive reals is associative. Proposition 9-3.5(i) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
addassprg ((𝐴P𝐵P𝐶P) → ((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶)))

Proof of Theorem addassprg
Dummy variables 𝑓 𝑔 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iplp 7390 . 2 +P = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦 +Q 𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦 +Q 𝑧))}⟩)
2 addclnq 7297 . 2 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
3 dmplp 7462 . 2 dom +P = (P × P)
4 addclpr 7459 . 2 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
5 addassnqg 7304 . 2 ((𝑓Q𝑔QQ) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
61, 2, 3, 4, 5genpassg 7448 1 ((𝐴P𝐵P𝐶P) → ((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 963   = wceq 1335  wcel 2128  (class class class)co 5826   +Q cplq 7204  Pcnp 7213   +P cpp 7215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4081  ax-sep 4084  ax-nul 4092  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-iinf 4549
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-tr 4065  df-eprel 4251  df-id 4255  df-po 4258  df-iso 4259  df-iord 4328  df-on 4330  df-suc 4333  df-iom 4552  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-recs 6254  df-irdg 6319  df-1o 6365  df-2o 6366  df-oadd 6369  df-omul 6370  df-er 6482  df-ec 6484  df-qs 6488  df-ni 7226  df-pli 7227  df-mi 7228  df-lti 7229  df-plpq 7266  df-mpq 7267  df-enq 7269  df-nqqs 7270  df-plqqs 7271  df-mqqs 7272  df-1nqqs 7273  df-rq 7274  df-ltnqqs 7275  df-enq0 7346  df-nq0 7347  df-0nq0 7348  df-plq0 7349  df-mq0 7350  df-inp 7388  df-iplp 7390
This theorem is referenced by:  ltaprlem  7540  ltaprg  7541  caucvgprlemcanl  7566  caucvgprprlemexb  7629  caucvgprprlemaddq  7630  enrer  7657  addcmpblnr  7661  mulcmpblnrlemg  7662  ltsrprg  7669  addasssrg  7678  mulasssrg  7680  distrsrg  7681  m1p1sr  7682  m1m1sr  7683  lttrsr  7684  ltsosr  7686  0idsr  7689  1idsr  7690  ltasrg  7692  recexgt0sr  7695  mulgt0sr  7700  mulextsr1lem  7702  srpospr  7705  prsradd  7708  prsrlt  7709  map2psrprg  7727  pitonnlem1p1  7768  pitoregt0  7771  recidpirqlemcalc  7779
  Copyright terms: Public domain W3C validator