| Step | Hyp | Ref
| Expression |
| 1 | | cauappcvgpr.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:Q⟶Q) |
| 2 | | cauappcvgpr.app |
. . . . . . 7
⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q
𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q
𝑞)))) |
| 3 | | cauappcvgpr.bnd |
. . . . . . 7
⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) |
| 4 | | cauappcvgpr.lim |
. . . . . . 7
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉 |
| 5 | 1, 2, 3, 4 | cauappcvgprlemcl 7737 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ P) |
| 6 | | cauappcvgprlemladd.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ Q) |
| 7 | | nqprlu 7631 |
. . . . . . 7
⊢ (𝑆 ∈ Q →
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉 ∈
P) |
| 8 | 6, 7 | syl 14 |
. . . . . 6
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉 ∈
P) |
| 9 | | df-iplp 7552 |
. . . . . . 7
⊢
+P = (𝑥 ∈ P, 𝑦 ∈ P ↦ 〈{𝑓 ∈ Q ∣
∃𝑔 ∈
Q ∃ℎ
∈ Q (𝑔
∈ (1st ‘𝑥) ∧ ℎ ∈ (1st ‘𝑦) ∧ 𝑓 = (𝑔 +Q ℎ))}, {𝑓 ∈ Q ∣ ∃𝑔 ∈ Q
∃ℎ ∈
Q (𝑔 ∈
(2nd ‘𝑥)
∧ ℎ ∈
(2nd ‘𝑦)
∧ 𝑓 = (𝑔 +Q
ℎ))}〉) |
| 10 | | addclnq 7459 |
. . . . . . 7
⊢ ((𝑔 ∈ Q ∧
ℎ ∈ Q)
→ (𝑔
+Q ℎ) ∈ Q) |
| 11 | 9, 10 | genpelvl 7596 |
. . . . . 6
⊢ ((𝐿 ∈ P ∧
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉 ∈ P)
→ (𝑟 ∈
(1st ‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) ↔ ∃𝑠 ∈ (1st
‘𝐿)∃𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)𝑟 = (𝑠 +Q 𝑡))) |
| 12 | 5, 8, 11 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) ↔ ∃𝑠 ∈ (1st
‘𝐿)∃𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)𝑟 = (𝑠 +Q 𝑡))) |
| 13 | 12 | biimpa 296 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → ∃𝑠 ∈ (1st
‘𝐿)∃𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)𝑟 = (𝑠 +Q 𝑡)) |
| 14 | | oveq1 5932 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = 𝑠 → (𝑙 +Q 𝑞) = (𝑠 +Q 𝑞)) |
| 15 | 14 | breq1d 4044 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = 𝑠 → ((𝑙 +Q 𝑞) <Q
(𝐹‘𝑞) ↔ (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞))) |
| 16 | 15 | rexbidv 2498 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑠 → (∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q
(𝐹‘𝑞) ↔ ∃𝑞 ∈ Q (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞))) |
| 17 | 4 | fveq2i 5564 |
. . . . . . . . . . . . . . 15
⊢
(1st ‘𝐿) = (1st ‘〈{𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉) |
| 18 | | nqex 7447 |
. . . . . . . . . . . . . . . . 17
⊢
Q ∈ V |
| 19 | 18 | rabex 4178 |
. . . . . . . . . . . . . . . 16
⊢ {𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q (𝐹‘𝑞)} ∈ V |
| 20 | 18 | rabex 4178 |
. . . . . . . . . . . . . . . 16
⊢ {𝑢 ∈ Q ∣
∃𝑞 ∈
Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢} ∈
V |
| 21 | 19, 20 | op1st 6213 |
. . . . . . . . . . . . . . 15
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉) = {𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q (𝐹‘𝑞)} |
| 22 | 17, 21 | eqtri 2217 |
. . . . . . . . . . . . . 14
⊢
(1st ‘𝐿) = {𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)} |
| 23 | 16, 22 | elrab2 2923 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑞 ∈
Q (𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) |
| 24 | 23 | biimpi 120 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ (1st
‘𝐿) → (𝑠 ∈ Q ∧
∃𝑞 ∈
Q (𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) |
| 25 | 24 | ad2antrl 490 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → (𝑠 ∈ Q ∧
∃𝑞 ∈
Q (𝑠
+Q 𝑞) <Q (𝐹‘𝑞))) |
| 26 | 25 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑠 ∈ Q ∧ ∃𝑞 ∈ Q (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞))) |
| 27 | 26 | simpld 112 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑠 ∈ Q) |
| 28 | | vex 2766 |
. . . . . . . . . . . . . . 15
⊢ 𝑡 ∈ V |
| 29 | | breq1 4037 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = 𝑡 → (𝑙 <Q 𝑆 ↔ 𝑡 <Q 𝑆)) |
| 30 | | ltnqex 7633 |
. . . . . . . . . . . . . . . 16
⊢ {𝑙 ∣ 𝑙 <Q 𝑆} ∈ V |
| 31 | | gtnqex 7634 |
. . . . . . . . . . . . . . . 16
⊢ {𝑢 ∣ 𝑆 <Q 𝑢} ∈ V |
| 32 | 30, 31 | op1st 6213 |
. . . . . . . . . . . . . . 15
⊢
(1st ‘〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉) = {𝑙 ∣ 𝑙 <Q 𝑆} |
| 33 | 28, 29, 32 | elab2 2912 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉) ↔ 𝑡 <Q
𝑆) |
| 34 | 33 | biimpi 120 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉) → 𝑡 <Q
𝑆) |
| 35 | 34 | ad2antll 491 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → 𝑡 <Q
𝑆) |
| 36 | 35 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑡 <Q 𝑆) |
| 37 | | ltrelnq 7449 |
. . . . . . . . . . . 12
⊢
<Q ⊆ (Q ×
Q) |
| 38 | 37 | brel 4716 |
. . . . . . . . . . 11
⊢ (𝑡 <Q
𝑆 → (𝑡 ∈ Q ∧
𝑆 ∈
Q)) |
| 39 | 36, 38 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑡 ∈ Q ∧ 𝑆 ∈
Q)) |
| 40 | 39 | simpld 112 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑡 ∈ Q) |
| 41 | | addclnq 7459 |
. . . . . . . . 9
⊢ ((𝑠 ∈ Q ∧
𝑡 ∈ Q)
→ (𝑠
+Q 𝑡) ∈ Q) |
| 42 | 27, 40, 41 | syl2anc 411 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑠 +Q 𝑡) ∈
Q) |
| 43 | | eleq1 2259 |
. . . . . . . . 9
⊢ (𝑟 = (𝑠 +Q 𝑡) → (𝑟 ∈ Q ↔ (𝑠 +Q
𝑡) ∈
Q)) |
| 44 | 43 | adantl 277 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑟 ∈ Q ↔ (𝑠 +Q
𝑡) ∈
Q)) |
| 45 | 42, 44 | mpbird 167 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑟 ∈ Q) |
| 46 | 26 | simprd 114 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → ∃𝑞 ∈ Q (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞)) |
| 47 | 27 | ad2antrr 488 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑟 ∈ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞)) → 𝑠 ∈ Q) |
| 48 | | simplr 528 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑟 ∈ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞)) → 𝑞 ∈ Q) |
| 49 | 40 | ad2antrr 488 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑟 ∈ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞)) → 𝑡 ∈ Q) |
| 50 | | addcomnqg 7465 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
| 51 | 50 | adantl 277 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑟 ∈ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
| 52 | | addassnqg 7466 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → ((𝑓
+Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q
ℎ))) |
| 53 | 52 | adantl 277 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑟 ∈ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ ((𝑓
+Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q
ℎ))) |
| 54 | 47, 48, 49, 51, 53 | caov32d 6108 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑟 ∈ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞)) → ((𝑠 +Q 𝑞) +Q
𝑡) = ((𝑠 +Q 𝑡) +Q
𝑞)) |
| 55 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞)) → (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞)) |
| 56 | 35 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞)) → 𝑡 <Q 𝑆) |
| 57 | 37 | brel 4716 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 +Q
𝑞)
<Q (𝐹‘𝑞) → ((𝑠 +Q 𝑞) ∈ Q ∧
(𝐹‘𝑞) ∈ Q)) |
| 58 | | lt2addnq 7488 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑠 +Q
𝑞) ∈ Q
∧ (𝐹‘𝑞) ∈ Q) ∧
(𝑡 ∈ Q
∧ 𝑆 ∈
Q)) → (((𝑠 +Q 𝑞) <Q
(𝐹‘𝑞) ∧ 𝑡 <Q 𝑆) → ((𝑠 +Q 𝑞) +Q
𝑡)
<Q ((𝐹‘𝑞) +Q 𝑆))) |
| 59 | 57, 39, 58 | syl2anr 290 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞)) → (((𝑠 +Q 𝑞) <Q
(𝐹‘𝑞) ∧ 𝑡 <Q 𝑆) → ((𝑠 +Q 𝑞) +Q
𝑡)
<Q ((𝐹‘𝑞) +Q 𝑆))) |
| 60 | 55, 56, 59 | mp2and 433 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ (𝑠 +Q 𝑞) <Q
(𝐹‘𝑞)) → ((𝑠 +Q 𝑞) +Q
𝑡)
<Q ((𝐹‘𝑞) +Q 𝑆)) |
| 61 | 60 | adantlr 477 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑟 ∈ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞)) → ((𝑠 +Q 𝑞) +Q
𝑡)
<Q ((𝐹‘𝑞) +Q 𝑆)) |
| 62 | 54, 61 | eqbrtrrd 4058 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑟 ∈ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞)) → ((𝑠 +Q 𝑡) +Q
𝑞)
<Q ((𝐹‘𝑞) +Q 𝑆)) |
| 63 | | oveq1 5932 |
. . . . . . . . . . . . 13
⊢ (𝑟 = (𝑠 +Q 𝑡) → (𝑟 +Q 𝑞) = ((𝑠 +Q 𝑡) +Q
𝑞)) |
| 64 | 63 | breq1d 4044 |
. . . . . . . . . . . 12
⊢ (𝑟 = (𝑠 +Q 𝑡) → ((𝑟 +Q 𝑞) <Q
((𝐹‘𝑞) +Q
𝑆) ↔ ((𝑠 +Q
𝑡)
+Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆))) |
| 65 | 64 | ad3antlr 493 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑟 ∈ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞)) → ((𝑟 +Q 𝑞) <Q
((𝐹‘𝑞) +Q
𝑆) ↔ ((𝑠 +Q
𝑡)
+Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆))) |
| 66 | 62, 65 | mpbird 167 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑟 ∈ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞)) → (𝑟 +Q 𝑞) <Q
((𝐹‘𝑞) +Q
𝑆)) |
| 67 | 66 | ex 115 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑟 ∈ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) → ((𝑠 +Q
𝑞)
<Q (𝐹‘𝑞) → (𝑟 +Q 𝑞) <Q
((𝐹‘𝑞) +Q
𝑆))) |
| 68 | 67 | reximdva 2599 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (∃𝑞 ∈ Q (𝑠 +Q
𝑞)
<Q (𝐹‘𝑞) → ∃𝑞 ∈ Q (𝑟 +Q 𝑞) <Q
((𝐹‘𝑞) +Q
𝑆))) |
| 69 | 46, 68 | mpd 13 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → ∃𝑞 ∈ Q (𝑟 +Q
𝑞)
<Q ((𝐹‘𝑞) +Q 𝑆)) |
| 70 | | oveq1 5932 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑟 → (𝑙 +Q 𝑞) = (𝑟 +Q 𝑞)) |
| 71 | 70 | breq1d 4044 |
. . . . . . . . 9
⊢ (𝑙 = 𝑟 → ((𝑙 +Q 𝑞) <Q
((𝐹‘𝑞) +Q
𝑆) ↔ (𝑟 +Q
𝑞)
<Q ((𝐹‘𝑞) +Q 𝑆))) |
| 72 | 71 | rexbidv 2498 |
. . . . . . . 8
⊢ (𝑙 = 𝑟 → (∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q
((𝐹‘𝑞) +Q
𝑆) ↔ ∃𝑞 ∈ Q (𝑟 +Q
𝑞)
<Q ((𝐹‘𝑞) +Q 𝑆))) |
| 73 | 18 | rabex 4178 |
. . . . . . . . 9
⊢ {𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆)} ∈ V |
| 74 | 18 | rabex 4178 |
. . . . . . . . 9
⊢ {𝑢 ∈ Q ∣
∃𝑞 ∈
Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢} ∈ V |
| 75 | 73, 74 | op1st 6213 |
. . . . . . . 8
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢}〉) = {𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q ((𝐹‘𝑞) +Q 𝑆)} |
| 76 | 72, 75 | elrab2 2923 |
. . . . . . 7
⊢ (𝑟 ∈ (1st
‘〈{𝑙 ∈
Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q
((𝐹‘𝑞) +Q
𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢}〉) ↔ (𝑟 ∈ Q ∧ ∃𝑞 ∈ Q (𝑟 +Q
𝑞)
<Q ((𝐹‘𝑞) +Q 𝑆))) |
| 77 | 45, 69, 76 | sylanbrc 417 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑟 ∈ (1st ‘〈{𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢}〉)) |
| 78 | 77 | ex 115 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → (𝑟 = (𝑠 +Q 𝑡) → 𝑟 ∈ (1st ‘〈{𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢}〉))) |
| 79 | 78 | rexlimdvva 2622 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → (∃𝑠 ∈ (1st
‘𝐿)∃𝑡 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)𝑟 = (𝑠 +Q 𝑡) → 𝑟 ∈ (1st ‘〈{𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢}〉))) |
| 80 | 13, 79 | mpd 13 |
. . 3
⊢ ((𝜑 ∧ 𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → 𝑟 ∈ (1st
‘〈{𝑙 ∈
Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q
((𝐹‘𝑞) +Q
𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢}〉)) |
| 81 | 80 | ex 115 |
. 2
⊢ (𝜑 → (𝑟 ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) → 𝑟 ∈ (1st
‘〈{𝑙 ∈
Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q
((𝐹‘𝑞) +Q
𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢}〉))) |
| 82 | 81 | ssrdv 3190 |
1
⊢ (𝜑 → (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) ⊆
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢}〉)) |