ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemladdfl GIF version

Theorem cauappcvgprlemladdfl 7604
Description: Lemma for cauappcvgprlemladd 7607. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
cauappcvgprlemladd.s (𝜑𝑆Q)
Assertion
Ref Expression
cauappcvgprlemladdfl (𝜑 → (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐹,𝑙,𝑢,𝑝,𝑞   𝑆,𝑙,𝑞,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑞,𝑙)   𝑆(𝑝)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemladdfl
Dummy variables 𝑓 𝑔 𝑟 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgpr.f . . . . . . 7 (𝜑𝐹:QQ)
2 cauappcvgpr.app . . . . . . 7 (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
3 cauappcvgpr.bnd . . . . . . 7 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
4 cauappcvgpr.lim . . . . . . 7 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
51, 2, 3, 4cauappcvgprlemcl 7602 . . . . . 6 (𝜑𝐿P)
6 cauappcvgprlemladd.s . . . . . . 7 (𝜑𝑆Q)
7 nqprlu 7496 . . . . . . 7 (𝑆Q → ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P)
86, 7syl 14 . . . . . 6 (𝜑 → ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P)
9 df-iplp 7417 . . . . . . 7 +P = (𝑥P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑥) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑥) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
10 addclnq 7324 . . . . . . 7 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
119, 10genpelvl 7461 . . . . . 6 ((𝐿P ∧ ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P) → (𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ↔ ∃𝑠 ∈ (1st𝐿)∃𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)𝑟 = (𝑠 +Q 𝑡)))
125, 8, 11syl2anc 409 . . . . 5 (𝜑 → (𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ↔ ∃𝑠 ∈ (1st𝐿)∃𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)𝑟 = (𝑠 +Q 𝑡)))
1312biimpa 294 . . . 4 ((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) → ∃𝑠 ∈ (1st𝐿)∃𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)𝑟 = (𝑠 +Q 𝑡))
14 oveq1 5857 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑠 → (𝑙 +Q 𝑞) = (𝑠 +Q 𝑞))
1514breq1d 3997 . . . . . . . . . . . . . . 15 (𝑙 = 𝑠 → ((𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
1615rexbidv 2471 . . . . . . . . . . . . . 14 (𝑙 = 𝑠 → (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
174fveq2i 5497 . . . . . . . . . . . . . . 15 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
18 nqex 7312 . . . . . . . . . . . . . . . . 17 Q ∈ V
1918rabex 4131 . . . . . . . . . . . . . . . 16 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
2018rabex 4131 . . . . . . . . . . . . . . . 16 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
2119, 20op1st 6122 . . . . . . . . . . . . . . 15 (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
2217, 21eqtri 2191 . . . . . . . . . . . . . 14 (1st𝐿) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
2316, 22elrab2 2889 . . . . . . . . . . . . 13 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
2423biimpi 119 . . . . . . . . . . . 12 (𝑠 ∈ (1st𝐿) → (𝑠Q ∧ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
2524ad2antrl 487 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) → (𝑠Q ∧ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
2625adantr 274 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑠Q ∧ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
2726simpld 111 . . . . . . . . 9 ((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑠Q)
28 vex 2733 . . . . . . . . . . . . . . 15 𝑡 ∈ V
29 breq1 3990 . . . . . . . . . . . . . . 15 (𝑙 = 𝑡 → (𝑙 <Q 𝑆𝑡 <Q 𝑆))
30 ltnqex 7498 . . . . . . . . . . . . . . . 16 {𝑙𝑙 <Q 𝑆} ∈ V
31 gtnqex 7499 . . . . . . . . . . . . . . . 16 {𝑢𝑆 <Q 𝑢} ∈ V
3230, 31op1st 6122 . . . . . . . . . . . . . . 15 (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) = {𝑙𝑙 <Q 𝑆}
3328, 29, 32elab2 2878 . . . . . . . . . . . . . 14 (𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ↔ 𝑡 <Q 𝑆)
3433biimpi 119 . . . . . . . . . . . . 13 (𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) → 𝑡 <Q 𝑆)
3534ad2antll 488 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) → 𝑡 <Q 𝑆)
3635adantr 274 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑡 <Q 𝑆)
37 ltrelnq 7314 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
3837brel 4661 . . . . . . . . . . 11 (𝑡 <Q 𝑆 → (𝑡Q𝑆Q))
3936, 38syl 14 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑡Q𝑆Q))
4039simpld 111 . . . . . . . . 9 ((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑡Q)
41 addclnq 7324 . . . . . . . . 9 ((𝑠Q𝑡Q) → (𝑠 +Q 𝑡) ∈ Q)
4227, 40, 41syl2anc 409 . . . . . . . 8 ((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑠 +Q 𝑡) ∈ Q)
43 eleq1 2233 . . . . . . . . 9 (𝑟 = (𝑠 +Q 𝑡) → (𝑟Q ↔ (𝑠 +Q 𝑡) ∈ Q))
4443adantl 275 . . . . . . . 8 ((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑟Q ↔ (𝑠 +Q 𝑡) ∈ Q))
4542, 44mpbird 166 . . . . . . 7 ((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑟Q)
4626simprd 113 . . . . . . . 8 ((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
4727ad2antrr 485 . . . . . . . . . . . . 13 ((((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞Q) ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞)) → 𝑠Q)
48 simplr 525 . . . . . . . . . . . . 13 ((((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞Q) ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞)) → 𝑞Q)
4940ad2antrr 485 . . . . . . . . . . . . 13 ((((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞Q) ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞)) → 𝑡Q)
50 addcomnqg 7330 . . . . . . . . . . . . . 14 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
5150adantl 275 . . . . . . . . . . . . 13 (((((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞Q) ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞)) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
52 addassnqg 7331 . . . . . . . . . . . . . 14 ((𝑓Q𝑔QQ) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
5352adantl 275 . . . . . . . . . . . . 13 (((((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞Q) ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞)) ∧ (𝑓Q𝑔QQ)) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
5447, 48, 49, 51, 53caov32d 6030 . . . . . . . . . . . 12 ((((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞Q) ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞)) → ((𝑠 +Q 𝑞) +Q 𝑡) = ((𝑠 +Q 𝑡) +Q 𝑞))
55 simpr 109 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞)) → (𝑠 +Q 𝑞) <Q (𝐹𝑞))
5635ad2antrr 485 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞)) → 𝑡 <Q 𝑆)
5737brel 4661 . . . . . . . . . . . . . . 15 ((𝑠 +Q 𝑞) <Q (𝐹𝑞) → ((𝑠 +Q 𝑞) ∈ Q ∧ (𝐹𝑞) ∈ Q))
58 lt2addnq 7353 . . . . . . . . . . . . . . 15 ((((𝑠 +Q 𝑞) ∈ Q ∧ (𝐹𝑞) ∈ Q) ∧ (𝑡Q𝑆Q)) → (((𝑠 +Q 𝑞) <Q (𝐹𝑞) ∧ 𝑡 <Q 𝑆) → ((𝑠 +Q 𝑞) +Q 𝑡) <Q ((𝐹𝑞) +Q 𝑆)))
5957, 39, 58syl2anr 288 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞)) → (((𝑠 +Q 𝑞) <Q (𝐹𝑞) ∧ 𝑡 <Q 𝑆) → ((𝑠 +Q 𝑞) +Q 𝑡) <Q ((𝐹𝑞) +Q 𝑆)))
6055, 56, 59mp2and 431 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞)) → ((𝑠 +Q 𝑞) +Q 𝑡) <Q ((𝐹𝑞) +Q 𝑆))
6160adantlr 474 . . . . . . . . . . . 12 ((((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞Q) ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞)) → ((𝑠 +Q 𝑞) +Q 𝑡) <Q ((𝐹𝑞) +Q 𝑆))
6254, 61eqbrtrrd 4011 . . . . . . . . . . 11 ((((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞Q) ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞)) → ((𝑠 +Q 𝑡) +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆))
63 oveq1 5857 . . . . . . . . . . . . 13 (𝑟 = (𝑠 +Q 𝑡) → (𝑟 +Q 𝑞) = ((𝑠 +Q 𝑡) +Q 𝑞))
6463breq1d 3997 . . . . . . . . . . . 12 (𝑟 = (𝑠 +Q 𝑡) → ((𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆) ↔ ((𝑠 +Q 𝑡) +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)))
6564ad3antlr 490 . . . . . . . . . . 11 ((((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞Q) ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞)) → ((𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆) ↔ ((𝑠 +Q 𝑡) +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)))
6662, 65mpbird 166 . . . . . . . . . 10 ((((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞Q) ∧ (𝑠 +Q 𝑞) <Q (𝐹𝑞)) → (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆))
6766ex 114 . . . . . . . . 9 (((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞Q) → ((𝑠 +Q 𝑞) <Q (𝐹𝑞) → (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)))
6867reximdva 2572 . . . . . . . 8 ((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞) → ∃𝑞Q (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)))
6946, 68mpd 13 . . . . . . 7 ((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → ∃𝑞Q (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆))
70 oveq1 5857 . . . . . . . . . 10 (𝑙 = 𝑟 → (𝑙 +Q 𝑞) = (𝑟 +Q 𝑞))
7170breq1d 3997 . . . . . . . . 9 (𝑙 = 𝑟 → ((𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆) ↔ (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)))
7271rexbidv 2471 . . . . . . . 8 (𝑙 = 𝑟 → (∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆) ↔ ∃𝑞Q (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)))
7318rabex 4131 . . . . . . . . 9 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)} ∈ V
7418rabex 4131 . . . . . . . . 9 {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢} ∈ V
7573, 74op1st 6122 . . . . . . . 8 (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}
7672, 75elrab2 2889 . . . . . . 7 (𝑟 ∈ (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) ↔ (𝑟Q ∧ ∃𝑞Q (𝑟 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)))
7745, 69, 76sylanbrc 415 . . . . . 6 ((((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑟 ∈ (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩))
7877ex 114 . . . . 5 (((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) → (𝑟 = (𝑠 +Q 𝑡) → 𝑟 ∈ (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩)))
7978rexlimdvva 2595 . . . 4 ((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) → (∃𝑠 ∈ (1st𝐿)∃𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)𝑟 = (𝑠 +Q 𝑡) → 𝑟 ∈ (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩)))
8013, 79mpd 13 . . 3 ((𝜑𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) → 𝑟 ∈ (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩))
8180ex 114 . 2 (𝜑 → (𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) → 𝑟 ∈ (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩)))
8281ssrdv 3153 1 (𝜑 → (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  {cab 2156  wral 2448  wrex 2449  {crab 2452  wss 3121  cop 3584   class class class wbr 3987  wf 5192  cfv 5196  (class class class)co 5850  1st c1st 6114  Qcnq 7229   +Q cplq 7231   <Q cltq 7234  Pcnp 7240   +P cpp 7242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-eprel 4272  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-1o 6392  df-oadd 6396  df-omul 6397  df-er 6509  df-ec 6511  df-qs 6515  df-ni 7253  df-pli 7254  df-mi 7255  df-lti 7256  df-plpq 7293  df-mpq 7294  df-enq 7296  df-nqqs 7297  df-plqqs 7298  df-mqqs 7299  df-1nqqs 7300  df-rq 7301  df-ltnqqs 7302  df-inp 7415  df-iplp 7417
This theorem is referenced by:  cauappcvgprlemladdru  7605  cauappcvgprlemladd  7607
  Copyright terms: Public domain W3C validator