| Step | Hyp | Ref
 | Expression | 
| 1 |   | caucvgpr.f | 
. . . . . . 7
⊢ (𝜑 → 𝐹:N⟶Q) | 
| 2 |   | caucvgpr.cau | 
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))))) | 
| 3 |   | caucvgpr.bnd | 
. . . . . . 7
⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) | 
| 4 |   | caucvgpr.lim | 
. . . . . . 7
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 | 
| 5 | 1, 2, 3, 4 | caucvgprlemcl 7743 | 
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ P) | 
| 6 |   | caucvgprlemladd.s | 
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ Q) | 
| 7 |   | nqprlu 7614 | 
. . . . . . 7
⊢ (𝑆 ∈ Q →
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉 ∈
P) | 
| 8 | 6, 7 | syl 14 | 
. . . . . 6
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉 ∈
P) | 
| 9 |   | df-iplp 7535 | 
. . . . . . 7
⊢ 
+P = (𝑥 ∈ P, 𝑦 ∈ P ↦ 〈{𝑓 ∈ Q ∣
∃𝑔 ∈
Q ∃ℎ
∈ Q (𝑔
∈ (1st ‘𝑥) ∧ ℎ ∈ (1st ‘𝑦) ∧ 𝑓 = (𝑔 +Q ℎ))}, {𝑓 ∈ Q ∣ ∃𝑔 ∈ Q
∃ℎ ∈
Q (𝑔 ∈
(2nd ‘𝑥)
∧ ℎ ∈
(2nd ‘𝑦)
∧ 𝑓 = (𝑔 +Q
ℎ))}〉) | 
| 10 |   | addclnq 7442 | 
. . . . . . 7
⊢ ((𝑔 ∈ Q ∧
ℎ ∈ Q)
→ (𝑔
+Q ℎ) ∈ Q) | 
| 11 | 9, 10 | genpelvu 7580 | 
. . . . . 6
⊢ ((𝐿 ∈ P ∧
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉 ∈ P)
→ (𝑟 ∈
(2nd ‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) ↔ ∃𝑠 ∈ (2nd
‘𝐿)∃𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)𝑟 = (𝑠 +Q 𝑡))) | 
| 12 | 5, 8, 11 | syl2anc 411 | 
. . . . 5
⊢ (𝜑 → (𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) ↔ ∃𝑠 ∈ (2nd
‘𝐿)∃𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)𝑟 = (𝑠 +Q 𝑡))) | 
| 13 | 12 | biimpa 296 | 
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → ∃𝑠 ∈ (2nd
‘𝐿)∃𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)𝑟 = (𝑠 +Q 𝑡)) | 
| 14 |   | breq2 4037 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑠 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) | 
| 15 | 14 | rexbidv 2498 | 
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑠 → (∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) | 
| 16 | 4 | fveq2i 5561 | 
. . . . . . . . . . . . . . . 16
⊢
(2nd ‘𝐿) = (2nd ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) | 
| 17 |   | nqex 7430 | 
. . . . . . . . . . . . . . . . . 18
⊢
Q ∈ V | 
| 18 | 17 | rabex 4177 | 
. . . . . . . . . . . . . . . . 17
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ V | 
| 19 | 17 | rabex 4177 | 
. . . . . . . . . . . . . . . . 17
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ V | 
| 20 | 18, 19 | op2nd 6205 | 
. . . . . . . . . . . . . . . 16
⊢
(2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} | 
| 21 | 16, 20 | eqtri 2217 | 
. . . . . . . . . . . . . . 15
⊢
(2nd ‘𝐿) = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} | 
| 22 | 15, 21 | elrab2 2923 | 
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ (2nd
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) | 
| 23 | 22 | biimpi 120 | 
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ (2nd
‘𝐿) → (𝑠 ∈ Q ∧
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) | 
| 24 | 23 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) → (𝑠 ∈ Q ∧
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) | 
| 25 | 24 | adantl 277 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → (𝑠 ∈ Q ∧
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) | 
| 26 | 25 | adantr 276 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑠 ∈ Q ∧ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) | 
| 27 | 26 | simpld 112 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑠 ∈ Q) | 
| 28 |   | vex 2766 | 
. . . . . . . . . . . . . 14
⊢ 𝑡 ∈ V | 
| 29 |   | breq2 4037 | 
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑡 → (𝑆 <Q 𝑢 ↔ 𝑆 <Q 𝑡)) | 
| 30 |   | ltnqex 7616 | 
. . . . . . . . . . . . . . 15
⊢ {𝑙 ∣ 𝑙 <Q 𝑆} ∈ V | 
| 31 |   | gtnqex 7617 | 
. . . . . . . . . . . . . . 15
⊢ {𝑢 ∣ 𝑆 <Q 𝑢} ∈ V | 
| 32 | 30, 31 | op2nd 6205 | 
. . . . . . . . . . . . . 14
⊢
(2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉) = {𝑢 ∣ 𝑆 <Q 𝑢} | 
| 33 | 28, 29, 32 | elab2 2912 | 
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉) ↔ 𝑆 <Q
𝑡) | 
| 34 |   | ltrelnq 7432 | 
. . . . . . . . . . . . . 14
⊢ 
<Q ⊆ (Q ×
Q) | 
| 35 | 34 | brel 4715 | 
. . . . . . . . . . . . 13
⊢ (𝑆 <Q
𝑡 → (𝑆 ∈ Q ∧ 𝑡 ∈
Q)) | 
| 36 | 33, 35 | sylbi 121 | 
. . . . . . . . . . . 12
⊢ (𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉) → (𝑆 ∈ Q ∧
𝑡 ∈
Q)) | 
| 37 | 36 | simprd 114 | 
. . . . . . . . . . 11
⊢ (𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉) → 𝑡 ∈
Q) | 
| 38 | 37 | ad2antll 491 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → 𝑡 ∈
Q) | 
| 39 | 38 | adantr 276 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑡 ∈ Q) | 
| 40 |   | addclnq 7442 | 
. . . . . . . . 9
⊢ ((𝑠 ∈ Q ∧
𝑡 ∈ Q)
→ (𝑠
+Q 𝑡) ∈ Q) | 
| 41 | 27, 39, 40 | syl2anc 411 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑠 +Q 𝑡) ∈
Q) | 
| 42 |   | eleq1 2259 | 
. . . . . . . . 9
⊢ (𝑟 = (𝑠 +Q 𝑡) → (𝑟 ∈ Q ↔ (𝑠 +Q
𝑡) ∈
Q)) | 
| 43 | 42 | adantl 277 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑟 ∈ Q ↔ (𝑠 +Q
𝑡) ∈
Q)) | 
| 44 | 41, 43 | mpbird 167 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑟 ∈ Q) | 
| 45 | 26 | simprd 114 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠) | 
| 46 |   | fveq2 5558 | 
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑚 → (𝐹‘𝑗) = (𝐹‘𝑚)) | 
| 47 |   | opeq1 3808 | 
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑚 → 〈𝑗, 1o〉 = 〈𝑚,
1o〉) | 
| 48 | 47 | eceq1d 6628 | 
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑚 → [〈𝑗, 1o〉]
~Q = [〈𝑚, 1o〉]
~Q ) | 
| 49 | 48 | fveq2d 5562 | 
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑚 →
(*Q‘[〈𝑗, 1o〉]
~Q ) = (*Q‘[〈𝑚, 1o〉]
~Q )) | 
| 50 | 46, 49 | oveq12d 5940 | 
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑚 → ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q ))) | 
| 51 | 50 | breq1d 4043 | 
. . . . . . . . . . 11
⊢ (𝑗 = 𝑚 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠 ↔ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠)) | 
| 52 | 51 | cbvrexv 2730 | 
. . . . . . . . . 10
⊢
(∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠 ↔ ∃𝑚 ∈ N ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) | 
| 53 | 45, 52 | sylib 122 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → ∃𝑚 ∈ N ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) | 
| 54 | 33 | biimpi 120 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉) → 𝑆 <Q
𝑡) | 
| 55 | 54 | ad2antll 491 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → 𝑆 <Q
𝑡) | 
| 56 | 55 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑆 <Q 𝑡) | 
| 57 | 56 | ad2antrr 488 | 
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) → 𝑆 <Q 𝑡) | 
| 58 | 6 | ad5antr 496 | 
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) → 𝑆 ∈ Q) | 
| 59 | 39 | ad2antrr 488 | 
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) → 𝑡 ∈ Q) | 
| 60 | 1 | ad5antr 496 | 
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) → 𝐹:N⟶Q) | 
| 61 |   | simplr 528 | 
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) → 𝑚 ∈ N) | 
| 62 | 60, 61 | ffvelcdmd 5698 | 
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) → (𝐹‘𝑚) ∈ Q) | 
| 63 |   | nnnq 7489 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ N →
[〈𝑚,
1o〉] ~Q ∈
Q) | 
| 64 |   | recclnq 7459 | 
. . . . . . . . . . . . . . . . 17
⊢
([〈𝑚,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) | 
| 65 | 61, 63, 64 | 3syl 17 | 
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) →
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) | 
| 66 |   | addclnq 7442 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑚) ∈ Q ∧
(*Q‘[〈𝑚, 1o〉]
~Q ) ∈ Q) → ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) | 
| 67 | 62, 65, 66 | syl2anc 411 | 
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) → ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) | 
| 68 |   | ltanqg 7467 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ Q ∧
𝑡 ∈ Q
∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) ∈ Q) → (𝑆 <Q
𝑡 ↔ (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑆) <Q (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑡))) | 
| 69 | 58, 59, 67, 68 | syl3anc 1249 | 
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) → (𝑆 <Q 𝑡 ↔ (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑆) <Q (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑡))) | 
| 70 | 57, 69 | mpbid 147 | 
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) → (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑆) <Q (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑡)) | 
| 71 |   | simpr 110 | 
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) → ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) | 
| 72 |   | ltanqg 7467 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ Q ∧
𝑤 ∈ Q
∧ 𝑣 ∈
Q) → (𝑧
<Q 𝑤 ↔ (𝑣 +Q 𝑧) <Q
(𝑣
+Q 𝑤))) | 
| 73 | 72 | adantl 277 | 
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) ∧ (𝑧 ∈ Q ∧ 𝑤 ∈ Q ∧
𝑣 ∈ Q))
→ (𝑧
<Q 𝑤 ↔ (𝑣 +Q 𝑧) <Q
(𝑣
+Q 𝑤))) | 
| 74 | 27 | ad2antrr 488 | 
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) → 𝑠 ∈ Q) | 
| 75 |   | addcomnqg 7448 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ Q ∧
𝑤 ∈ Q)
→ (𝑧
+Q 𝑤) = (𝑤 +Q 𝑧)) | 
| 76 | 75 | adantl 277 | 
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) ∧ (𝑧 ∈ Q ∧ 𝑤 ∈ Q)) →
(𝑧
+Q 𝑤) = (𝑤 +Q 𝑧)) | 
| 77 | 73, 67, 74, 59, 76 | caovord2d 6093 | 
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) → (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠 ↔ (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑡) <Q (𝑠 +Q
𝑡))) | 
| 78 | 71, 77 | mpbid 147 | 
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) → (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑡) <Q (𝑠 +Q
𝑡)) | 
| 79 |   | ltsonq 7465 | 
. . . . . . . . . . . . . 14
⊢ 
<Q Or Q | 
| 80 | 79, 34 | sotri 5065 | 
. . . . . . . . . . . . 13
⊢
(((((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑆) <Q (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑡) ∧ (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑡) <Q (𝑠 +Q
𝑡)) → (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑆) <Q (𝑠 +Q
𝑡)) | 
| 81 | 70, 78, 80 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) → (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑆) <Q (𝑠 +Q
𝑡)) | 
| 82 |   | simpllr 534 | 
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) → 𝑟 = (𝑠 +Q 𝑡)) | 
| 83 | 81, 82 | breqtrrd 4061 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) ∧ ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠) → (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑆) <Q 𝑟) | 
| 84 | 83 | ex 115 | 
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚 ∈ N) → (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠 → (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑆) <Q 𝑟)) | 
| 85 | 84 | reximdva 2599 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (∃𝑚 ∈ N ((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) <Q 𝑠 → ∃𝑚 ∈ N (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑆) <Q 𝑟)) | 
| 86 | 53, 85 | mpd 13 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → ∃𝑚 ∈ N (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑆) <Q 𝑟) | 
| 87 | 50 | oveq1d 5937 | 
. . . . . . . . . 10
⊢ (𝑗 = 𝑚 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) +Q 𝑆) = (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑆)) | 
| 88 | 87 | breq1d 4043 | 
. . . . . . . . 9
⊢ (𝑗 = 𝑚 → ((((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) +Q 𝑆) <Q 𝑟 ↔ (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑆) <Q 𝑟)) | 
| 89 | 88 | cbvrexv 2730 | 
. . . . . . . 8
⊢
(∃𝑗 ∈
N (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) +Q 𝑆) <Q 𝑟 ↔ ∃𝑚 ∈ N (((𝐹‘𝑚) +Q
(*Q‘[〈𝑚, 1o〉]
~Q )) +Q 𝑆) <Q 𝑟) | 
| 90 | 86, 89 | sylibr 134 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → ∃𝑗 ∈ N (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) +Q 𝑆) <Q 𝑟) | 
| 91 |   | breq2 4037 | 
. . . . . . . . 9
⊢ (𝑢 = 𝑟 → ((((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) +Q 𝑆) <Q 𝑢 ↔ (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) +Q 𝑆) <Q 𝑟)) | 
| 92 | 91 | rexbidv 2498 | 
. . . . . . . 8
⊢ (𝑢 = 𝑟 → (∃𝑗 ∈ N (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) +Q 𝑆) <Q 𝑢 ↔ ∃𝑗 ∈ N (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) +Q 𝑆) <Q 𝑟)) | 
| 93 | 92 | elrab 2920 | 
. . . . . . 7
⊢ (𝑟 ∈ {𝑢 ∈ Q ∣ ∃𝑗 ∈ N (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) +Q 𝑆) <Q 𝑢} ↔ (𝑟 ∈ Q ∧ ∃𝑗 ∈ N (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) +Q 𝑆) <Q 𝑟)) | 
| 94 | 44, 90, 93 | sylanbrc 417 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑟 ∈ {𝑢 ∈ Q ∣ ∃𝑗 ∈ N (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) +Q 𝑆) <Q 𝑢}) | 
| 95 | 94 | ex 115 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → (𝑟 = (𝑠 +Q 𝑡) → 𝑟 ∈ {𝑢 ∈ Q ∣ ∃𝑗 ∈ N (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) +Q 𝑆) <Q 𝑢})) | 
| 96 | 95 | rexlimdvva 2622 | 
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → (∃𝑠 ∈ (2nd
‘𝐿)∃𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)𝑟 = (𝑠 +Q 𝑡) → 𝑟 ∈ {𝑢 ∈ Q ∣ ∃𝑗 ∈ N (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) +Q 𝑆) <Q 𝑢})) | 
| 97 | 13, 96 | mpd 13 | 
. . 3
⊢ ((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → 𝑟 ∈ {𝑢 ∈ Q ∣ ∃𝑗 ∈ N (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) +Q 𝑆) <Q 𝑢}) | 
| 98 | 97 | ex 115 | 
. 2
⊢ (𝜑 → (𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) → 𝑟 ∈ {𝑢 ∈ Q ∣ ∃𝑗 ∈ N (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) +Q 𝑆) <Q 𝑢})) | 
| 99 | 98 | ssrdv 3189 | 
1
⊢ (𝜑 → (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) ⊆ {𝑢 ∈ Q ∣
∃𝑗 ∈
N (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) +Q 𝑆) <Q 𝑢}) |