ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemladdfu GIF version

Theorem caucvgprlemladdfu 7180
Description: Lemma for caucvgpr 7185. Adding 𝑆 after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 9-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
caucvgprlemladd.s (𝜑𝑆Q)
Assertion
Ref Expression
caucvgprlemladdfu (𝜑 → (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ⊆ {𝑢Q ∣ ∃𝑗N (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑢})
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑢,𝑙   𝑛,𝐹,𝑘   𝑘,𝐿,𝑗   𝑆,𝑙,𝑢,𝑗   𝑗,𝑘
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝑆(𝑘,𝑛)   𝐿(𝑢,𝑛,𝑙)

Proof of Theorem caucvgprlemladdfu
Dummy variables 𝑚 𝑟 𝑠 𝑡 𝑣 𝑤 𝑧 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgpr.f . . . . . . 7 (𝜑𝐹:NQ)
2 caucvgpr.cau . . . . . . 7 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
3 caucvgpr.bnd . . . . . . 7 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
4 caucvgpr.lim . . . . . . 7 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
51, 2, 3, 4caucvgprlemcl 7179 . . . . . 6 (𝜑𝐿P)
6 caucvgprlemladd.s . . . . . . 7 (𝜑𝑆Q)
7 nqprlu 7050 . . . . . . 7 (𝑆Q → ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P)
86, 7syl 14 . . . . . 6 (𝜑 → ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P)
9 df-iplp 6971 . . . . . . 7 +P = (𝑥P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑥) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑥) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
10 addclnq 6878 . . . . . . 7 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
119, 10genpelvu 7016 . . . . . 6 ((𝐿P ∧ ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P) → (𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ↔ ∃𝑠 ∈ (2nd𝐿)∃𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)𝑟 = (𝑠 +Q 𝑡)))
125, 8, 11syl2anc 403 . . . . 5 (𝜑 → (𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ↔ ∃𝑠 ∈ (2nd𝐿)∃𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)𝑟 = (𝑠 +Q 𝑡)))
1312biimpa 290 . . . 4 ((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) → ∃𝑠 ∈ (2nd𝐿)∃𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)𝑟 = (𝑠 +Q 𝑡))
14 breq2 3824 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑠 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑠))
1514rexbidv 2377 . . . . . . . . . . . . . . 15 (𝑢 = 𝑠 → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑠))
164fveq2i 5271 . . . . . . . . . . . . . . . 16 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)
17 nqex 6866 . . . . . . . . . . . . . . . . . 18 Q ∈ V
1817rabex 3958 . . . . . . . . . . . . . . . . 17 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
1917rabex 3958 . . . . . . . . . . . . . . . . 17 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢} ∈ V
2018, 19op2nd 5875 . . . . . . . . . . . . . . . 16 (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}
2116, 20eqtri 2105 . . . . . . . . . . . . . . 15 (2nd𝐿) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}
2215, 21elrab2 2765 . . . . . . . . . . . . . 14 (𝑠 ∈ (2nd𝐿) ↔ (𝑠Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑠))
2322biimpi 118 . . . . . . . . . . . . 13 (𝑠 ∈ (2nd𝐿) → (𝑠Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑠))
2423adantr 270 . . . . . . . . . . . 12 ((𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) → (𝑠Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑠))
2524adantl 271 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) → (𝑠Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑠))
2625adantr 270 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑠Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑠))
2726simpld 110 . . . . . . . . 9 ((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑠Q)
28 vex 2618 . . . . . . . . . . . . . 14 𝑡 ∈ V
29 breq2 3824 . . . . . . . . . . . . . 14 (𝑢 = 𝑡 → (𝑆 <Q 𝑢𝑆 <Q 𝑡))
30 ltnqex 7052 . . . . . . . . . . . . . . 15 {𝑙𝑙 <Q 𝑆} ∈ V
31 gtnqex 7053 . . . . . . . . . . . . . . 15 {𝑢𝑆 <Q 𝑢} ∈ V
3230, 31op2nd 5875 . . . . . . . . . . . . . 14 (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) = {𝑢𝑆 <Q 𝑢}
3328, 29, 32elab2 2754 . . . . . . . . . . . . 13 (𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ↔ 𝑆 <Q 𝑡)
34 ltrelnq 6868 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
3534brel 4458 . . . . . . . . . . . . 13 (𝑆 <Q 𝑡 → (𝑆Q𝑡Q))
3633, 35sylbi 119 . . . . . . . . . . . 12 (𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) → (𝑆Q𝑡Q))
3736simprd 112 . . . . . . . . . . 11 (𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) → 𝑡Q)
3837ad2antll 475 . . . . . . . . . 10 (((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) → 𝑡Q)
3938adantr 270 . . . . . . . . 9 ((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑡Q)
40 addclnq 6878 . . . . . . . . 9 ((𝑠Q𝑡Q) → (𝑠 +Q 𝑡) ∈ Q)
4127, 39, 40syl2anc 403 . . . . . . . 8 ((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑠 +Q 𝑡) ∈ Q)
42 eleq1 2147 . . . . . . . . 9 (𝑟 = (𝑠 +Q 𝑡) → (𝑟Q ↔ (𝑠 +Q 𝑡) ∈ Q))
4342adantl 271 . . . . . . . 8 ((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑟Q ↔ (𝑠 +Q 𝑡) ∈ Q))
4441, 43mpbird 165 . . . . . . 7 ((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑟Q)
4526simprd 112 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑠)
46 fveq2 5268 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → (𝐹𝑗) = (𝐹𝑚))
47 opeq1 3605 . . . . . . . . . . . . . . 15 (𝑗 = 𝑚 → ⟨𝑗, 1𝑜⟩ = ⟨𝑚, 1𝑜⟩)
4847eceq1d 6280 . . . . . . . . . . . . . 14 (𝑗 = 𝑚 → [⟨𝑗, 1𝑜⟩] ~Q = [⟨𝑚, 1𝑜⟩] ~Q )
4948fveq2d 5272 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))
5046, 49oveq12d 5631 . . . . . . . . . . . 12 (𝑗 = 𝑚 → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )))
5150breq1d 3830 . . . . . . . . . . 11 (𝑗 = 𝑚 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑠 ↔ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠))
5251cbvrexv 2587 . . . . . . . . . 10 (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑠 ↔ ∃𝑚N ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠)
5345, 52sylib 120 . . . . . . . . 9 ((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → ∃𝑚N ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠)
5433biimpi 118 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) → 𝑆 <Q 𝑡)
5554ad2antll 475 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) → 𝑆 <Q 𝑡)
5655adantr 270 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑆 <Q 𝑡)
5756ad2antrr 472 . . . . . . . . . . . . . 14 ((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) → 𝑆 <Q 𝑡)
586ad5antr 480 . . . . . . . . . . . . . . 15 ((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) → 𝑆Q)
5939ad2antrr 472 . . . . . . . . . . . . . . 15 ((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) → 𝑡Q)
601ad5antr 480 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) → 𝐹:NQ)
61 simplr 497 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) → 𝑚N)
6260, 61ffvelrnd 5398 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) → (𝐹𝑚) ∈ Q)
63 nnnq 6925 . . . . . . . . . . . . . . . . 17 (𝑚N → [⟨𝑚, 1𝑜⟩] ~QQ)
64 recclnq 6895 . . . . . . . . . . . . . . . . 17 ([⟨𝑚, 1𝑜⟩] ~QQ → (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) ∈ Q)
6561, 63, 643syl 17 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) → (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) ∈ Q)
66 addclnq 6878 . . . . . . . . . . . . . . . 16 (((𝐹𝑚) ∈ Q ∧ (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) ∈ Q) → ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ∈ Q)
6762, 65, 66syl2anc 403 . . . . . . . . . . . . . . 15 ((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) → ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ∈ Q)
68 ltanqg 6903 . . . . . . . . . . . . . . 15 ((𝑆Q𝑡Q ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ∈ Q) → (𝑆 <Q 𝑡 ↔ (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑆) <Q (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑡)))
6958, 59, 67, 68syl3anc 1172 . . . . . . . . . . . . . 14 ((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) → (𝑆 <Q 𝑡 ↔ (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑆) <Q (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑡)))
7057, 69mpbid 145 . . . . . . . . . . . . 13 ((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) → (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑆) <Q (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑡))
71 simpr 108 . . . . . . . . . . . . . 14 ((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) → ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠)
72 ltanqg 6903 . . . . . . . . . . . . . . . 16 ((𝑧Q𝑤Q𝑣Q) → (𝑧 <Q 𝑤 ↔ (𝑣 +Q 𝑧) <Q (𝑣 +Q 𝑤)))
7372adantl 271 . . . . . . . . . . . . . . 15 (((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) ∧ (𝑧Q𝑤Q𝑣Q)) → (𝑧 <Q 𝑤 ↔ (𝑣 +Q 𝑧) <Q (𝑣 +Q 𝑤)))
7427ad2antrr 472 . . . . . . . . . . . . . . 15 ((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) → 𝑠Q)
75 addcomnqg 6884 . . . . . . . . . . . . . . . 16 ((𝑧Q𝑤Q) → (𝑧 +Q 𝑤) = (𝑤 +Q 𝑧))
7675adantl 271 . . . . . . . . . . . . . . 15 (((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) ∧ (𝑧Q𝑤Q)) → (𝑧 +Q 𝑤) = (𝑤 +Q 𝑧))
7773, 67, 74, 59, 76caovord2d 5771 . . . . . . . . . . . . . 14 ((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) → (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠 ↔ (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑡) <Q (𝑠 +Q 𝑡)))
7871, 77mpbid 145 . . . . . . . . . . . . 13 ((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) → (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑡) <Q (𝑠 +Q 𝑡))
79 ltsonq 6901 . . . . . . . . . . . . . 14 <Q Or Q
8079, 34sotri 4794 . . . . . . . . . . . . 13 (((((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑆) <Q (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑡) ∧ (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑡) <Q (𝑠 +Q 𝑡)) → (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑆) <Q (𝑠 +Q 𝑡))
8170, 78, 80syl2anc 403 . . . . . . . . . . . 12 ((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) → (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑆) <Q (𝑠 +Q 𝑡))
82 simpllr 501 . . . . . . . . . . . 12 ((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) → 𝑟 = (𝑠 +Q 𝑡))
8381, 82breqtrrd 3846 . . . . . . . . . . 11 ((((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) ∧ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠) → (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑟)
8483ex 113 . . . . . . . . . 10 (((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑚N) → (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠 → (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑟))
8584reximdva 2471 . . . . . . . . 9 ((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (∃𝑚N ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑠 → ∃𝑚N (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑟))
8653, 85mpd 13 . . . . . . . 8 ((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → ∃𝑚N (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑟)
8750oveq1d 5628 . . . . . . . . . 10 (𝑗 = 𝑚 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) +Q 𝑆) = (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑆))
8887breq1d 3830 . . . . . . . . 9 (𝑗 = 𝑚 → ((((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑟 ↔ (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑟))
8988cbvrexv 2587 . . . . . . . 8 (∃𝑗N (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑟 ↔ ∃𝑚N (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑟)
9086, 89sylibr 132 . . . . . . 7 ((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → ∃𝑗N (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑟)
91 breq2 3824 . . . . . . . . 9 (𝑢 = 𝑟 → ((((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑢 ↔ (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑟))
9291rexbidv 2377 . . . . . . . 8 (𝑢 = 𝑟 → (∃𝑗N (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑢 ↔ ∃𝑗N (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑟))
9392elrab 2762 . . . . . . 7 (𝑟 ∈ {𝑢Q ∣ ∃𝑗N (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑢} ↔ (𝑟Q ∧ ∃𝑗N (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑟))
9444, 90, 93sylanbrc 408 . . . . . 6 ((((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑟 ∈ {𝑢Q ∣ ∃𝑗N (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑢})
9594ex 113 . . . . 5 (((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd𝐿) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) → (𝑟 = (𝑠 +Q 𝑡) → 𝑟 ∈ {𝑢Q ∣ ∃𝑗N (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑢}))
9695rexlimdvva 2492 . . . 4 ((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) → (∃𝑠 ∈ (2nd𝐿)∃𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)𝑟 = (𝑠 +Q 𝑡) → 𝑟 ∈ {𝑢Q ∣ ∃𝑗N (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑢}))
9713, 96mpd 13 . . 3 ((𝜑𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))) → 𝑟 ∈ {𝑢Q ∣ ∃𝑗N (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑢})
9897ex 113 . 2 (𝜑 → (𝑟 ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) → 𝑟 ∈ {𝑢Q ∣ ∃𝑗N (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑢}))
9998ssrdv 3020 1 (𝜑 → (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ⊆ {𝑢Q ∣ ∃𝑗N (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑢})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 922   = wceq 1287  wcel 1436  {cab 2071  wral 2355  wrex 2356  {crab 2359  wss 2988  cop 3434   class class class wbr 3820  wf 4977  cfv 4981  (class class class)co 5613  2nd c2nd 5867  1𝑜c1o 6128  [cec 6242  Ncnpi 6775   <N clti 6778   ~Q ceq 6782  Qcnq 6783   +Q cplq 6785  *Qcrq 6787   <Q cltq 6788  Pcnp 6794   +P cpp 6796
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-eprel 4090  df-id 4094  df-po 4097  df-iso 4098  df-iord 4167  df-on 4169  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-irdg 6089  df-1o 6135  df-oadd 6139  df-omul 6140  df-er 6244  df-ec 6246  df-qs 6250  df-ni 6807  df-pli 6808  df-mi 6809  df-lti 6810  df-plpq 6847  df-mpq 6848  df-enq 6850  df-nqqs 6851  df-plqqs 6852  df-mqqs 6853  df-1nqqs 6854  df-rq 6855  df-ltnqqs 6856  df-inp 6969  df-iplp 6971
This theorem is referenced by:  caucvgprlemladdrl  7181
  Copyright terms: Public domain W3C validator