ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprlemrl GIF version

Theorem addnqprlemrl 7389
Description: Lemma for addnqpr 7393. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
Assertion
Ref Expression
addnqprlemrl ((𝐴Q𝐵Q) → (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩))
Distinct variable groups:   𝐴,𝑙,𝑢   𝐵,𝑙,𝑢

Proof of Theorem addnqprlemrl
Dummy variables 𝑓 𝑔 𝑟 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqprlu 7379 . . . . . 6 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
2 nqprlu 7379 . . . . . 6 (𝐵Q → ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P)
3 df-iplp 7300 . . . . . . 7 +P = (𝑥P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑥) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑥) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
4 addclnq 7207 . . . . . . 7 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
53, 4genpelvl 7344 . . . . . 6 ((⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P) → (𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ↔ ∃𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)∃𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)𝑟 = (𝑠 +Q 𝑡)))
61, 2, 5syl2an 287 . . . . 5 ((𝐴Q𝐵Q) → (𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ↔ ∃𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)∃𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)𝑟 = (𝑠 +Q 𝑡)))
76biimpa 294 . . . 4 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) → ∃𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)∃𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)𝑟 = (𝑠 +Q 𝑡))
8 vex 2692 . . . . . . . . . . . . 13 𝑠 ∈ V
9 breq1 3940 . . . . . . . . . . . . 13 (𝑙 = 𝑠 → (𝑙 <Q 𝐴𝑠 <Q 𝐴))
10 ltnqex 7381 . . . . . . . . . . . . . 14 {𝑙𝑙 <Q 𝐴} ∈ V
11 gtnqex 7382 . . . . . . . . . . . . . 14 {𝑢𝐴 <Q 𝑢} ∈ V
1210, 11op1st 6052 . . . . . . . . . . . . 13 (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) = {𝑙𝑙 <Q 𝐴}
138, 9, 12elab2 2836 . . . . . . . . . . . 12 (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝑠 <Q 𝐴)
1413biimpi 119 . . . . . . . . . . 11 (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) → 𝑠 <Q 𝐴)
1514ad2antrl 482 . . . . . . . . . 10 ((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) → 𝑠 <Q 𝐴)
1615adantr 274 . . . . . . . . 9 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑠 <Q 𝐴)
17 vex 2692 . . . . . . . . . . . . 13 𝑡 ∈ V
18 breq1 3940 . . . . . . . . . . . . 13 (𝑙 = 𝑡 → (𝑙 <Q 𝐵𝑡 <Q 𝐵))
19 ltnqex 7381 . . . . . . . . . . . . . 14 {𝑙𝑙 <Q 𝐵} ∈ V
20 gtnqex 7382 . . . . . . . . . . . . . 14 {𝑢𝐵 <Q 𝑢} ∈ V
2119, 20op1st 6052 . . . . . . . . . . . . 13 (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) = {𝑙𝑙 <Q 𝐵}
2217, 18, 21elab2 2836 . . . . . . . . . . . 12 (𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ↔ 𝑡 <Q 𝐵)
2322biimpi 119 . . . . . . . . . . 11 (𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) → 𝑡 <Q 𝐵)
2423ad2antll 483 . . . . . . . . . 10 ((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) → 𝑡 <Q 𝐵)
2524adantr 274 . . . . . . . . 9 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑡 <Q 𝐵)
26 ltrelnq 7197 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
2726brel 4599 . . . . . . . . . . 11 (𝑠 <Q 𝐴 → (𝑠Q𝐴Q))
2816, 27syl 14 . . . . . . . . . 10 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑠Q𝐴Q))
2926brel 4599 . . . . . . . . . . 11 (𝑡 <Q 𝐵 → (𝑡Q𝐵Q))
3025, 29syl 14 . . . . . . . . . 10 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑡Q𝐵Q))
31 lt2addnq 7236 . . . . . . . . . 10 (((𝑠Q𝐴Q) ∧ (𝑡Q𝐵Q)) → ((𝑠 <Q 𝐴𝑡 <Q 𝐵) → (𝑠 +Q 𝑡) <Q (𝐴 +Q 𝐵)))
3228, 30, 31syl2anc 409 . . . . . . . . 9 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → ((𝑠 <Q 𝐴𝑡 <Q 𝐵) → (𝑠 +Q 𝑡) <Q (𝐴 +Q 𝐵)))
3316, 25, 32mp2and 430 . . . . . . . 8 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑠 +Q 𝑡) <Q (𝐴 +Q 𝐵))
34 breq1 3940 . . . . . . . . 9 (𝑟 = (𝑠 +Q 𝑡) → (𝑟 <Q (𝐴 +Q 𝐵) ↔ (𝑠 +Q 𝑡) <Q (𝐴 +Q 𝐵)))
3534adantl 275 . . . . . . . 8 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑟 <Q (𝐴 +Q 𝐵) ↔ (𝑠 +Q 𝑡) <Q (𝐴 +Q 𝐵)))
3633, 35mpbird 166 . . . . . . 7 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑟 <Q (𝐴 +Q 𝐵))
37 vex 2692 . . . . . . . 8 𝑟 ∈ V
38 breq1 3940 . . . . . . . 8 (𝑙 = 𝑟 → (𝑙 <Q (𝐴 +Q 𝐵) ↔ 𝑟 <Q (𝐴 +Q 𝐵)))
39 ltnqex 7381 . . . . . . . . 9 {𝑙𝑙 <Q (𝐴 +Q 𝐵)} ∈ V
40 gtnqex 7382 . . . . . . . . 9 {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢} ∈ V
4139, 40op1st 6052 . . . . . . . 8 (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) = {𝑙𝑙 <Q (𝐴 +Q 𝐵)}
4237, 38, 41elab2 2836 . . . . . . 7 (𝑟 ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) ↔ 𝑟 <Q (𝐴 +Q 𝐵))
4336, 42sylibr 133 . . . . . 6 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑟 ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩))
4443ex 114 . . . . 5 ((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) → (𝑟 = (𝑠 +Q 𝑡) → 𝑟 ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩)))
4544rexlimdvva 2560 . . . 4 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) → (∃𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)∃𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)𝑟 = (𝑠 +Q 𝑡) → 𝑟 ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩)))
467, 45mpd 13 . . 3 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) → 𝑟 ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩))
4746ex 114 . 2 ((𝐴Q𝐵Q) → (𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) → 𝑟 ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩)))
4847ssrdv 3108 1 ((𝐴Q𝐵Q) → (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  {cab 2126  wrex 2418  wss 3076  cop 3535   class class class wbr 3937  cfv 5131  (class class class)co 5782  1st c1st 6044  Qcnq 7112   +Q cplq 7114   <Q cltq 7117  Pcnp 7123   +P cpp 7125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-inp 7298  df-iplp 7300
This theorem is referenced by:  addnqprlemfu  7392  addnqpr  7393
  Copyright terms: Public domain W3C validator