ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprlemrl GIF version

Theorem addnqprlemrl 7752
Description: Lemma for addnqpr 7756. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
Assertion
Ref Expression
addnqprlemrl ((𝐴Q𝐵Q) → (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩))
Distinct variable groups:   𝐴,𝑙,𝑢   𝐵,𝑙,𝑢

Proof of Theorem addnqprlemrl
Dummy variables 𝑓 𝑔 𝑟 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqprlu 7742 . . . . . 6 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
2 nqprlu 7742 . . . . . 6 (𝐵Q → ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P)
3 df-iplp 7663 . . . . . . 7 +P = (𝑥P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑥) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑥) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
4 addclnq 7570 . . . . . . 7 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
53, 4genpelvl 7707 . . . . . 6 ((⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P) → (𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ↔ ∃𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)∃𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)𝑟 = (𝑠 +Q 𝑡)))
61, 2, 5syl2an 289 . . . . 5 ((𝐴Q𝐵Q) → (𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ↔ ∃𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)∃𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)𝑟 = (𝑠 +Q 𝑡)))
76biimpa 296 . . . 4 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) → ∃𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)∃𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)𝑟 = (𝑠 +Q 𝑡))
8 vex 2802 . . . . . . . . . . . . 13 𝑠 ∈ V
9 breq1 4086 . . . . . . . . . . . . 13 (𝑙 = 𝑠 → (𝑙 <Q 𝐴𝑠 <Q 𝐴))
10 ltnqex 7744 . . . . . . . . . . . . . 14 {𝑙𝑙 <Q 𝐴} ∈ V
11 gtnqex 7745 . . . . . . . . . . . . . 14 {𝑢𝐴 <Q 𝑢} ∈ V
1210, 11op1st 6298 . . . . . . . . . . . . 13 (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) = {𝑙𝑙 <Q 𝐴}
138, 9, 12elab2 2951 . . . . . . . . . . . 12 (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝑠 <Q 𝐴)
1413biimpi 120 . . . . . . . . . . 11 (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) → 𝑠 <Q 𝐴)
1514ad2antrl 490 . . . . . . . . . 10 ((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) → 𝑠 <Q 𝐴)
1615adantr 276 . . . . . . . . 9 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑠 <Q 𝐴)
17 vex 2802 . . . . . . . . . . . . 13 𝑡 ∈ V
18 breq1 4086 . . . . . . . . . . . . 13 (𝑙 = 𝑡 → (𝑙 <Q 𝐵𝑡 <Q 𝐵))
19 ltnqex 7744 . . . . . . . . . . . . . 14 {𝑙𝑙 <Q 𝐵} ∈ V
20 gtnqex 7745 . . . . . . . . . . . . . 14 {𝑢𝐵 <Q 𝑢} ∈ V
2119, 20op1st 6298 . . . . . . . . . . . . 13 (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) = {𝑙𝑙 <Q 𝐵}
2217, 18, 21elab2 2951 . . . . . . . . . . . 12 (𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ↔ 𝑡 <Q 𝐵)
2322biimpi 120 . . . . . . . . . . 11 (𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) → 𝑡 <Q 𝐵)
2423ad2antll 491 . . . . . . . . . 10 ((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) → 𝑡 <Q 𝐵)
2524adantr 276 . . . . . . . . 9 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑡 <Q 𝐵)
26 ltrelnq 7560 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
2726brel 4771 . . . . . . . . . . 11 (𝑠 <Q 𝐴 → (𝑠Q𝐴Q))
2816, 27syl 14 . . . . . . . . . 10 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑠Q𝐴Q))
2926brel 4771 . . . . . . . . . . 11 (𝑡 <Q 𝐵 → (𝑡Q𝐵Q))
3025, 29syl 14 . . . . . . . . . 10 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑡Q𝐵Q))
31 lt2addnq 7599 . . . . . . . . . 10 (((𝑠Q𝐴Q) ∧ (𝑡Q𝐵Q)) → ((𝑠 <Q 𝐴𝑡 <Q 𝐵) → (𝑠 +Q 𝑡) <Q (𝐴 +Q 𝐵)))
3228, 30, 31syl2anc 411 . . . . . . . . 9 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → ((𝑠 <Q 𝐴𝑡 <Q 𝐵) → (𝑠 +Q 𝑡) <Q (𝐴 +Q 𝐵)))
3316, 25, 32mp2and 433 . . . . . . . 8 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑠 +Q 𝑡) <Q (𝐴 +Q 𝐵))
34 breq1 4086 . . . . . . . . 9 (𝑟 = (𝑠 +Q 𝑡) → (𝑟 <Q (𝐴 +Q 𝐵) ↔ (𝑠 +Q 𝑡) <Q (𝐴 +Q 𝐵)))
3534adantl 277 . . . . . . . 8 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑟 <Q (𝐴 +Q 𝐵) ↔ (𝑠 +Q 𝑡) <Q (𝐴 +Q 𝐵)))
3633, 35mpbird 167 . . . . . . 7 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑟 <Q (𝐴 +Q 𝐵))
37 vex 2802 . . . . . . . 8 𝑟 ∈ V
38 breq1 4086 . . . . . . . 8 (𝑙 = 𝑟 → (𝑙 <Q (𝐴 +Q 𝐵) ↔ 𝑟 <Q (𝐴 +Q 𝐵)))
39 ltnqex 7744 . . . . . . . . 9 {𝑙𝑙 <Q (𝐴 +Q 𝐵)} ∈ V
40 gtnqex 7745 . . . . . . . . 9 {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢} ∈ V
4139, 40op1st 6298 . . . . . . . 8 (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) = {𝑙𝑙 <Q (𝐴 +Q 𝐵)}
4237, 38, 41elab2 2951 . . . . . . 7 (𝑟 ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) ↔ 𝑟 <Q (𝐴 +Q 𝐵))
4336, 42sylibr 134 . . . . . 6 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑟 ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩))
4443ex 115 . . . . 5 ((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) → (𝑟 = (𝑠 +Q 𝑡) → 𝑟 ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩)))
4544rexlimdvva 2656 . . . 4 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) → (∃𝑠 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)∃𝑡 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)𝑟 = (𝑠 +Q 𝑡) → 𝑟 ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩)))
467, 45mpd 13 . . 3 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) → 𝑟 ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩))
4746ex 115 . 2 ((𝐴Q𝐵Q) → (𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) → 𝑟 ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩)))
4847ssrdv 3230 1 ((𝐴Q𝐵Q) → (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  {cab 2215  wrex 2509  wss 3197  cop 3669   class class class wbr 4083  cfv 5318  (class class class)co 6007  1st c1st 6290  Qcnq 7475   +Q cplq 7477   <Q cltq 7480  Pcnp 7486   +P cpp 7488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-1o 6568  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-pli 7500  df-mi 7501  df-lti 7502  df-plpq 7539  df-mpq 7540  df-enq 7542  df-nqqs 7543  df-plqqs 7544  df-mqqs 7545  df-1nqqs 7546  df-rq 7547  df-ltnqqs 7548  df-inp 7661  df-iplp 7663
This theorem is referenced by:  addnqprlemfu  7755  addnqpr  7756
  Copyright terms: Public domain W3C validator