ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpdf GIF version

Theorem genpdf 7470
Description: Simplified definition of addition or multiplication on positive reals. (Contributed by Jim Kingdon, 30-Sep-2019.)
Hypothesis
Ref Expression
genpdf.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑤) ∧ 𝑠 ∈ (1st𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑤) ∧ 𝑠 ∈ (2nd𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}⟩)
Assertion
Ref Expression
genpdf 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟 ∈ (1st𝑤)∃𝑠 ∈ (1st𝑣)𝑞 = (𝑟𝐺𝑠)}, {𝑞Q ∣ ∃𝑟 ∈ (2nd𝑤)∃𝑠 ∈ (2nd𝑣)𝑞 = (𝑟𝐺𝑠)}⟩)
Distinct variable group:   𝑟,𝑞,𝑠,𝑣,𝑤
Allowed substitution hints:   𝐹(𝑤,𝑣,𝑠,𝑟,𝑞)   𝐺(𝑤,𝑣,𝑠,𝑟,𝑞)

Proof of Theorem genpdf
StepHypRef Expression
1 genpdf.1 . 2 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑤) ∧ 𝑠 ∈ (1st𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑤) ∧ 𝑠 ∈ (2nd𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}⟩)
2 prop 7437 . . . . . . 7 (𝑤P → ⟨(1st𝑤), (2nd𝑤)⟩ ∈ P)
3 elprnql 7443 . . . . . . 7 ((⟨(1st𝑤), (2nd𝑤)⟩ ∈ P𝑟 ∈ (1st𝑤)) → 𝑟Q)
42, 3sylan 281 . . . . . 6 ((𝑤P𝑟 ∈ (1st𝑤)) → 𝑟Q)
54adantlr 474 . . . . 5 (((𝑤P𝑣P) ∧ 𝑟 ∈ (1st𝑤)) → 𝑟Q)
6 prop 7437 . . . . . . 7 (𝑣P → ⟨(1st𝑣), (2nd𝑣)⟩ ∈ P)
7 elprnql 7443 . . . . . . 7 ((⟨(1st𝑣), (2nd𝑣)⟩ ∈ P𝑠 ∈ (1st𝑣)) → 𝑠Q)
86, 7sylan 281 . . . . . 6 ((𝑣P𝑠 ∈ (1st𝑣)) → 𝑠Q)
98adantll 473 . . . . 5 (((𝑤P𝑣P) ∧ 𝑠 ∈ (1st𝑣)) → 𝑠Q)
105, 9genpdflem 7469 . . . 4 ((𝑤P𝑣P) → {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑤) ∧ 𝑠 ∈ (1st𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))} = {𝑞Q ∣ ∃𝑟 ∈ (1st𝑤)∃𝑠 ∈ (1st𝑣)𝑞 = (𝑟𝐺𝑠)})
11 elprnqu 7444 . . . . . . 7 ((⟨(1st𝑤), (2nd𝑤)⟩ ∈ P𝑟 ∈ (2nd𝑤)) → 𝑟Q)
122, 11sylan 281 . . . . . 6 ((𝑤P𝑟 ∈ (2nd𝑤)) → 𝑟Q)
1312adantlr 474 . . . . 5 (((𝑤P𝑣P) ∧ 𝑟 ∈ (2nd𝑤)) → 𝑟Q)
14 elprnqu 7444 . . . . . . 7 ((⟨(1st𝑣), (2nd𝑣)⟩ ∈ P𝑠 ∈ (2nd𝑣)) → 𝑠Q)
156, 14sylan 281 . . . . . 6 ((𝑣P𝑠 ∈ (2nd𝑣)) → 𝑠Q)
1615adantll 473 . . . . 5 (((𝑤P𝑣P) ∧ 𝑠 ∈ (2nd𝑣)) → 𝑠Q)
1713, 16genpdflem 7469 . . . 4 ((𝑤P𝑣P) → {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑤) ∧ 𝑠 ∈ (2nd𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))} = {𝑞Q ∣ ∃𝑟 ∈ (2nd𝑤)∃𝑠 ∈ (2nd𝑣)𝑞 = (𝑟𝐺𝑠)})
1810, 17opeq12d 3773 . . 3 ((𝑤P𝑣P) → ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑤) ∧ 𝑠 ∈ (1st𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑤) ∧ 𝑠 ∈ (2nd𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}⟩ = ⟨{𝑞Q ∣ ∃𝑟 ∈ (1st𝑤)∃𝑠 ∈ (1st𝑣)𝑞 = (𝑟𝐺𝑠)}, {𝑞Q ∣ ∃𝑟 ∈ (2nd𝑤)∃𝑠 ∈ (2nd𝑣)𝑞 = (𝑟𝐺𝑠)}⟩)
1918mpoeq3ia 5918 . 2 (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑤) ∧ 𝑠 ∈ (1st𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑤) ∧ 𝑠 ∈ (2nd𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}⟩) = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟 ∈ (1st𝑤)∃𝑠 ∈ (1st𝑣)𝑞 = (𝑟𝐺𝑠)}, {𝑞Q ∣ ∃𝑟 ∈ (2nd𝑤)∃𝑠 ∈ (2nd𝑣)𝑞 = (𝑟𝐺𝑠)}⟩)
201, 19eqtri 2191 1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟 ∈ (1st𝑤)∃𝑠 ∈ (1st𝑣)𝑞 = (𝑟𝐺𝑠)}, {𝑞Q ∣ ∃𝑟 ∈ (2nd𝑤)∃𝑠 ∈ (2nd𝑣)𝑞 = (𝑟𝐺𝑠)}⟩)
Colors of variables: wff set class
Syntax hints:  wa 103  w3a 973   = wceq 1348  wcel 2141  wrex 2449  {crab 2452  cop 3586  cfv 5198  (class class class)co 5853  cmpo 5855  1st c1st 6117  2nd c2nd 6118  Qcnq 7242  Pcnp 7253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-qs 6519  df-ni 7266  df-nqqs 7310  df-inp 7428
This theorem is referenced by:  genipv  7471
  Copyright terms: Public domain W3C validator