ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpdf GIF version

Theorem genpdf 7636
Description: Simplified definition of addition or multiplication on positive reals. (Contributed by Jim Kingdon, 30-Sep-2019.)
Hypothesis
Ref Expression
genpdf.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑤) ∧ 𝑠 ∈ (1st𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑤) ∧ 𝑠 ∈ (2nd𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}⟩)
Assertion
Ref Expression
genpdf 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟 ∈ (1st𝑤)∃𝑠 ∈ (1st𝑣)𝑞 = (𝑟𝐺𝑠)}, {𝑞Q ∣ ∃𝑟 ∈ (2nd𝑤)∃𝑠 ∈ (2nd𝑣)𝑞 = (𝑟𝐺𝑠)}⟩)
Distinct variable group:   𝑟,𝑞,𝑠,𝑣,𝑤
Allowed substitution hints:   𝐹(𝑤,𝑣,𝑠,𝑟,𝑞)   𝐺(𝑤,𝑣,𝑠,𝑟,𝑞)

Proof of Theorem genpdf
StepHypRef Expression
1 genpdf.1 . 2 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑤) ∧ 𝑠 ∈ (1st𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑤) ∧ 𝑠 ∈ (2nd𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}⟩)
2 prop 7603 . . . . . . 7 (𝑤P → ⟨(1st𝑤), (2nd𝑤)⟩ ∈ P)
3 elprnql 7609 . . . . . . 7 ((⟨(1st𝑤), (2nd𝑤)⟩ ∈ P𝑟 ∈ (1st𝑤)) → 𝑟Q)
42, 3sylan 283 . . . . . 6 ((𝑤P𝑟 ∈ (1st𝑤)) → 𝑟Q)
54adantlr 477 . . . . 5 (((𝑤P𝑣P) ∧ 𝑟 ∈ (1st𝑤)) → 𝑟Q)
6 prop 7603 . . . . . . 7 (𝑣P → ⟨(1st𝑣), (2nd𝑣)⟩ ∈ P)
7 elprnql 7609 . . . . . . 7 ((⟨(1st𝑣), (2nd𝑣)⟩ ∈ P𝑠 ∈ (1st𝑣)) → 𝑠Q)
86, 7sylan 283 . . . . . 6 ((𝑣P𝑠 ∈ (1st𝑣)) → 𝑠Q)
98adantll 476 . . . . 5 (((𝑤P𝑣P) ∧ 𝑠 ∈ (1st𝑣)) → 𝑠Q)
105, 9genpdflem 7635 . . . 4 ((𝑤P𝑣P) → {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑤) ∧ 𝑠 ∈ (1st𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))} = {𝑞Q ∣ ∃𝑟 ∈ (1st𝑤)∃𝑠 ∈ (1st𝑣)𝑞 = (𝑟𝐺𝑠)})
11 elprnqu 7610 . . . . . . 7 ((⟨(1st𝑤), (2nd𝑤)⟩ ∈ P𝑟 ∈ (2nd𝑤)) → 𝑟Q)
122, 11sylan 283 . . . . . 6 ((𝑤P𝑟 ∈ (2nd𝑤)) → 𝑟Q)
1312adantlr 477 . . . . 5 (((𝑤P𝑣P) ∧ 𝑟 ∈ (2nd𝑤)) → 𝑟Q)
14 elprnqu 7610 . . . . . . 7 ((⟨(1st𝑣), (2nd𝑣)⟩ ∈ P𝑠 ∈ (2nd𝑣)) → 𝑠Q)
156, 14sylan 283 . . . . . 6 ((𝑣P𝑠 ∈ (2nd𝑣)) → 𝑠Q)
1615adantll 476 . . . . 5 (((𝑤P𝑣P) ∧ 𝑠 ∈ (2nd𝑣)) → 𝑠Q)
1713, 16genpdflem 7635 . . . 4 ((𝑤P𝑣P) → {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑤) ∧ 𝑠 ∈ (2nd𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))} = {𝑞Q ∣ ∃𝑟 ∈ (2nd𝑤)∃𝑠 ∈ (2nd𝑣)𝑞 = (𝑟𝐺𝑠)})
1810, 17opeq12d 3832 . . 3 ((𝑤P𝑣P) → ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑤) ∧ 𝑠 ∈ (1st𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑤) ∧ 𝑠 ∈ (2nd𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}⟩ = ⟨{𝑞Q ∣ ∃𝑟 ∈ (1st𝑤)∃𝑠 ∈ (1st𝑣)𝑞 = (𝑟𝐺𝑠)}, {𝑞Q ∣ ∃𝑟 ∈ (2nd𝑤)∃𝑠 ∈ (2nd𝑣)𝑞 = (𝑟𝐺𝑠)}⟩)
1918mpoeq3ia 6022 . 2 (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑤) ∧ 𝑠 ∈ (1st𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑤) ∧ 𝑠 ∈ (2nd𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}⟩) = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟 ∈ (1st𝑤)∃𝑠 ∈ (1st𝑣)𝑞 = (𝑟𝐺𝑠)}, {𝑞Q ∣ ∃𝑟 ∈ (2nd𝑤)∃𝑠 ∈ (2nd𝑣)𝑞 = (𝑟𝐺𝑠)}⟩)
201, 19eqtri 2227 1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟 ∈ (1st𝑤)∃𝑠 ∈ (1st𝑣)𝑞 = (𝑟𝐺𝑠)}, {𝑞Q ∣ ∃𝑟 ∈ (2nd𝑤)∃𝑠 ∈ (2nd𝑣)𝑞 = (𝑟𝐺𝑠)}⟩)
Colors of variables: wff set class
Syntax hints:  wa 104  w3a 981   = wceq 1373  wcel 2177  wrex 2486  {crab 2489  cop 3640  cfv 5279  (class class class)co 5956  cmpo 5958  1st c1st 6236  2nd c2nd 6237  Qcnq 7408  Pcnp 7419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-iinf 4643
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-qs 6638  df-ni 7432  df-nqqs 7476  df-inp 7594
This theorem is referenced by:  genipv  7637
  Copyright terms: Public domain W3C validator