Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > plpvlu | GIF version |
Description: Value of addition on positive reals. (Contributed by Jim Kingdon, 8-Dec-2019.) |
Ref | Expression |
---|---|
plpvlu | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ (1st ‘𝐴)∃𝑧 ∈ (1st ‘𝐵)𝑥 = (𝑦 +Q 𝑧)}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ (2nd ‘𝐴)∃𝑧 ∈ (2nd ‘𝐵)𝑥 = (𝑦 +Q 𝑧)}〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iplp 7367 | . 2 ⊢ +P = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑓 ∈ Q ∣ ∃𝑔 ∈ Q ∃ℎ ∈ Q (𝑔 ∈ (1st ‘𝑤) ∧ ℎ ∈ (1st ‘𝑣) ∧ 𝑓 = (𝑔 +Q ℎ))}, {𝑓 ∈ Q ∣ ∃𝑔 ∈ Q ∃ℎ ∈ Q (𝑔 ∈ (2nd ‘𝑤) ∧ ℎ ∈ (2nd ‘𝑣) ∧ 𝑓 = (𝑔 +Q ℎ))}〉) | |
2 | addclnq 7274 | . 2 ⊢ ((𝑔 ∈ Q ∧ ℎ ∈ Q) → (𝑔 +Q ℎ) ∈ Q) | |
3 | 1, 2 | genipv 7408 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ (1st ‘𝐴)∃𝑧 ∈ (1st ‘𝐵)𝑥 = (𝑦 +Q 𝑧)}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ (2nd ‘𝐴)∃𝑧 ∈ (2nd ‘𝐵)𝑥 = (𝑦 +Q 𝑧)}〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1332 ∈ wcel 2125 ∃wrex 2433 {crab 2436 〈cop 3559 ‘cfv 5163 (class class class)co 5814 1st c1st 6076 2nd c2nd 6077 Qcnq 7179 +Q cplq 7181 Pcnp 7190 +P cpp 7192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-irdg 6307 df-oadd 6357 df-omul 6358 df-er 6469 df-ec 6471 df-qs 6475 df-ni 7203 df-pli 7204 df-mi 7205 df-plpq 7243 df-enq 7246 df-nqqs 7247 df-plqqs 7248 df-inp 7365 df-iplp 7367 |
This theorem is referenced by: addcomprg 7477 |
Copyright terms: Public domain | W3C validator |