![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > plpvlu | GIF version |
Description: Value of addition on positive reals. (Contributed by Jim Kingdon, 8-Dec-2019.) |
Ref | Expression |
---|---|
plpvlu | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ (1st ‘𝐴)∃𝑧 ∈ (1st ‘𝐵)𝑥 = (𝑦 +Q 𝑧)}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ (2nd ‘𝐴)∃𝑧 ∈ (2nd ‘𝐵)𝑥 = (𝑦 +Q 𝑧)}〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iplp 7124 | . 2 ⊢ +P = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑓 ∈ Q ∣ ∃𝑔 ∈ Q ∃ℎ ∈ Q (𝑔 ∈ (1st ‘𝑤) ∧ ℎ ∈ (1st ‘𝑣) ∧ 𝑓 = (𝑔 +Q ℎ))}, {𝑓 ∈ Q ∣ ∃𝑔 ∈ Q ∃ℎ ∈ Q (𝑔 ∈ (2nd ‘𝑤) ∧ ℎ ∈ (2nd ‘𝑣) ∧ 𝑓 = (𝑔 +Q ℎ))}〉) | |
2 | addclnq 7031 | . 2 ⊢ ((𝑔 ∈ Q ∧ ℎ ∈ Q) → (𝑔 +Q ℎ) ∈ Q) | |
3 | 1, 2 | genipv 7165 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ (1st ‘𝐴)∃𝑧 ∈ (1st ‘𝐵)𝑥 = (𝑦 +Q 𝑧)}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ (2nd ‘𝐴)∃𝑧 ∈ (2nd ‘𝐵)𝑥 = (𝑦 +Q 𝑧)}〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 ∃wrex 2371 {crab 2374 〈cop 3469 ‘cfv 5049 (class class class)co 5690 1st c1st 5947 2nd c2nd 5948 Qcnq 6936 +Q cplq 6938 Pcnp 6947 +P cpp 6949 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-iinf 4431 |
This theorem depends on definitions: df-bi 116 df-dc 784 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-tr 3959 df-id 4144 df-iord 4217 df-on 4219 df-suc 4222 df-iom 4434 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-1st 5949 df-2nd 5950 df-recs 6108 df-irdg 6173 df-oadd 6223 df-omul 6224 df-er 6332 df-ec 6334 df-qs 6338 df-ni 6960 df-pli 6961 df-mi 6962 df-plpq 7000 df-enq 7003 df-nqqs 7004 df-plqqs 7005 df-inp 7122 df-iplp 7124 |
This theorem is referenced by: addcomprg 7234 |
Copyright terms: Public domain | W3C validator |