| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plpvlu | GIF version | ||
| Description: Value of addition on positive reals. (Contributed by Jim Kingdon, 8-Dec-2019.) |
| Ref | Expression |
|---|---|
| plpvlu | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ (1st ‘𝐴)∃𝑧 ∈ (1st ‘𝐵)𝑥 = (𝑦 +Q 𝑧)}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ (2nd ‘𝐴)∃𝑧 ∈ (2nd ‘𝐵)𝑥 = (𝑦 +Q 𝑧)}〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iplp 7596 | . 2 ⊢ +P = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑓 ∈ Q ∣ ∃𝑔 ∈ Q ∃ℎ ∈ Q (𝑔 ∈ (1st ‘𝑤) ∧ ℎ ∈ (1st ‘𝑣) ∧ 𝑓 = (𝑔 +Q ℎ))}, {𝑓 ∈ Q ∣ ∃𝑔 ∈ Q ∃ℎ ∈ Q (𝑔 ∈ (2nd ‘𝑤) ∧ ℎ ∈ (2nd ‘𝑣) ∧ 𝑓 = (𝑔 +Q ℎ))}〉) | |
| 2 | addclnq 7503 | . 2 ⊢ ((𝑔 ∈ Q ∧ ℎ ∈ Q) → (𝑔 +Q ℎ) ∈ Q) | |
| 3 | 1, 2 | genipv 7637 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ (1st ‘𝐴)∃𝑧 ∈ (1st ‘𝐵)𝑥 = (𝑦 +Q 𝑧)}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ (2nd ‘𝐴)∃𝑧 ∈ (2nd ‘𝐵)𝑥 = (𝑦 +Q 𝑧)}〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 {crab 2489 〈cop 3640 ‘cfv 5279 (class class class)co 5956 1st c1st 6236 2nd c2nd 6237 Qcnq 7408 +Q cplq 7410 Pcnp 7419 +P cpp 7421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-iord 4420 df-on 4422 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-irdg 6468 df-oadd 6518 df-omul 6519 df-er 6632 df-ec 6634 df-qs 6638 df-ni 7432 df-pli 7433 df-mi 7434 df-plpq 7472 df-enq 7475 df-nqqs 7476 df-plqqs 7477 df-inp 7594 df-iplp 7596 |
| This theorem is referenced by: addcomprg 7706 |
| Copyright terms: Public domain | W3C validator |