Step | Hyp | Ref
| Expression |
1 | | cauappcvgpr.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:Q⟶Q) |
2 | | cauappcvgpr.app |
. . . . . . 7
⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q
𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q
𝑞)))) |
3 | | cauappcvgpr.bnd |
. . . . . . 7
⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) |
4 | | cauappcvgpr.lim |
. . . . . . 7
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉 |
5 | 1, 2, 3, 4 | cauappcvgprlemcl 7594 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ P) |
6 | | cauappcvgprlemladd.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ Q) |
7 | | nqprlu 7488 |
. . . . . . 7
⊢ (𝑆 ∈ Q →
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉 ∈
P) |
8 | 6, 7 | syl 14 |
. . . . . 6
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉 ∈
P) |
9 | | df-iplp 7409 |
. . . . . . 7
⊢
+P = (𝑥 ∈ P, 𝑦 ∈ P ↦ 〈{𝑓 ∈ Q ∣
∃𝑔 ∈
Q ∃ℎ
∈ Q (𝑔
∈ (1st ‘𝑥) ∧ ℎ ∈ (1st ‘𝑦) ∧ 𝑓 = (𝑔 +Q ℎ))}, {𝑓 ∈ Q ∣ ∃𝑔 ∈ Q
∃ℎ ∈
Q (𝑔 ∈
(2nd ‘𝑥)
∧ ℎ ∈
(2nd ‘𝑦)
∧ 𝑓 = (𝑔 +Q
ℎ))}〉) |
10 | | addclnq 7316 |
. . . . . . 7
⊢ ((𝑔 ∈ Q ∧
ℎ ∈ Q)
→ (𝑔
+Q ℎ) ∈ Q) |
11 | 9, 10 | genpelvu 7454 |
. . . . . 6
⊢ ((𝐿 ∈ P ∧
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉 ∈ P)
→ (𝑟 ∈
(2nd ‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) ↔ ∃𝑠 ∈ (2nd
‘𝐿)∃𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)𝑟 = (𝑠 +Q 𝑡))) |
12 | 5, 8, 11 | syl2anc 409 |
. . . . 5
⊢ (𝜑 → (𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) ↔ ∃𝑠 ∈ (2nd
‘𝐿)∃𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)𝑟 = (𝑠 +Q 𝑡))) |
13 | 12 | biimpa 294 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → ∃𝑠 ∈ (2nd
‘𝐿)∃𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)𝑟 = (𝑠 +Q 𝑡)) |
14 | | breq2 3986 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑠 → (((𝐹‘𝑞) +Q 𝑞) <Q
𝑢 ↔ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠)) |
15 | 14 | rexbidv 2467 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑠 → (∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢 ↔ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠)) |
16 | 4 | fveq2i 5489 |
. . . . . . . . . . . . . . . 16
⊢
(2nd ‘𝐿) = (2nd ‘〈{𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉) |
17 | | nqex 7304 |
. . . . . . . . . . . . . . . . . 18
⊢
Q ∈ V |
18 | 17 | rabex 4126 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q (𝐹‘𝑞)} ∈ V |
19 | 17 | rabex 4126 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑢 ∈ Q ∣
∃𝑞 ∈
Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢} ∈
V |
20 | 18, 19 | op2nd 6115 |
. . . . . . . . . . . . . . . 16
⊢
(2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉) = {𝑢 ∈ Q ∣
∃𝑞 ∈
Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢} |
21 | 16, 20 | eqtri 2186 |
. . . . . . . . . . . . . . 15
⊢
(2nd ‘𝐿) = {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢} |
22 | 15, 21 | elrab2 2885 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ (2nd
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑞 ∈
Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠)) |
23 | 22 | biimpi 119 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ (2nd
‘𝐿) → (𝑠 ∈ Q ∧
∃𝑞 ∈
Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠)) |
24 | 23 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) → (𝑠 ∈ Q ∧
∃𝑞 ∈
Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠)) |
25 | 24 | adantl 275 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → (𝑠 ∈ Q ∧
∃𝑞 ∈
Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠)) |
26 | 25 | adantr 274 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑠 ∈ Q ∧ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠)) |
27 | 26 | simpld 111 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑠 ∈ Q) |
28 | | vex 2729 |
. . . . . . . . . . . . . 14
⊢ 𝑡 ∈ V |
29 | | breq2 3986 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑡 → (𝑆 <Q 𝑢 ↔ 𝑆 <Q 𝑡)) |
30 | | ltnqex 7490 |
. . . . . . . . . . . . . . 15
⊢ {𝑙 ∣ 𝑙 <Q 𝑆} ∈ V |
31 | | gtnqex 7491 |
. . . . . . . . . . . . . . 15
⊢ {𝑢 ∣ 𝑆 <Q 𝑢} ∈ V |
32 | 30, 31 | op2nd 6115 |
. . . . . . . . . . . . . 14
⊢
(2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉) = {𝑢 ∣ 𝑆 <Q 𝑢} |
33 | 28, 29, 32 | elab2 2874 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉) ↔ 𝑆 <Q
𝑡) |
34 | | ltrelnq 7306 |
. . . . . . . . . . . . . 14
⊢
<Q ⊆ (Q ×
Q) |
35 | 34 | brel 4656 |
. . . . . . . . . . . . 13
⊢ (𝑆 <Q
𝑡 → (𝑆 ∈ Q ∧ 𝑡 ∈
Q)) |
36 | 33, 35 | sylbi 120 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉) → (𝑆 ∈ Q ∧
𝑡 ∈
Q)) |
37 | 36 | simprd 113 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉) → 𝑡 ∈
Q) |
38 | 37 | ad2antll 483 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → 𝑡 ∈
Q) |
39 | 38 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑡 ∈ Q) |
40 | | addclnq 7316 |
. . . . . . . . 9
⊢ ((𝑠 ∈ Q ∧
𝑡 ∈ Q)
→ (𝑠
+Q 𝑡) ∈ Q) |
41 | 27, 39, 40 | syl2anc 409 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑠 +Q 𝑡) ∈
Q) |
42 | | eleq1 2229 |
. . . . . . . . 9
⊢ (𝑟 = (𝑠 +Q 𝑡) → (𝑟 ∈ Q ↔ (𝑠 +Q
𝑡) ∈
Q)) |
43 | 42 | adantl 275 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (𝑟 ∈ Q ↔ (𝑠 +Q
𝑡) ∈
Q)) |
44 | 41, 43 | mpbird 166 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑟 ∈ Q) |
45 | 26 | simprd 113 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) |
46 | 33 | biimpi 119 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉) → 𝑆 <Q
𝑡) |
47 | 46 | ad2antll 483 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → 𝑆 <Q
𝑡) |
48 | 47 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑆 <Q 𝑡) |
49 | 48 | ad2antrr 480 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) → 𝑆 <Q 𝑡) |
50 | 6 | ad5antr 488 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) → 𝑆 ∈ Q) |
51 | 39 | ad2antrr 480 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) → 𝑡 ∈
Q) |
52 | 1 | ad5antr 488 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) → 𝐹:Q⟶Q) |
53 | | simplr 520 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) → 𝑞 ∈
Q) |
54 | 52, 53 | ffvelrnd 5621 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) → (𝐹‘𝑞) ∈ Q) |
55 | | addclnq 7316 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑞) ∈ Q ∧ 𝑞 ∈ Q) →
((𝐹‘𝑞) +Q
𝑞) ∈
Q) |
56 | 54, 53, 55 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) → ((𝐹‘𝑞) +Q 𝑞) ∈
Q) |
57 | | ltanqg 7341 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ Q ∧
𝑡 ∈ Q
∧ ((𝐹‘𝑞) +Q
𝑞) ∈ Q)
→ (𝑆
<Q 𝑡 ↔ (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑡))) |
58 | 50, 51, 56, 57 | syl3anc 1228 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) → (𝑆 <Q
𝑡 ↔ (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑡))) |
59 | 49, 58 | mpbid 146 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) → (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑡)) |
60 | | simpr 109 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) → ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) |
61 | | ltanqg 7341 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
62 | 61 | adantl 275 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) ∧ (𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q)) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
63 | 27 | ad2antrr 480 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) → 𝑠 ∈
Q) |
64 | | addcomnqg 7322 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
65 | 64 | adantl 275 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) ∧ (𝑓 ∈ Q ∧
𝑔 ∈ Q))
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
66 | 62, 56, 63, 51, 65 | caovord2d 6011 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) → (((𝐹‘𝑞) +Q 𝑞) <Q
𝑠 ↔ (((𝐹‘𝑞) +Q 𝑞) +Q
𝑡)
<Q (𝑠 +Q 𝑡))) |
67 | 60, 66 | mpbid 146 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) → (((𝐹‘𝑞) +Q 𝑞) +Q
𝑡)
<Q (𝑠 +Q 𝑡)) |
68 | | ltsonq 7339 |
. . . . . . . . . . . . 13
⊢
<Q Or Q |
69 | 68, 34 | sotri 4999 |
. . . . . . . . . . . 12
⊢
(((((𝐹‘𝑞) +Q
𝑞)
+Q 𝑆) <Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑡) ∧ (((𝐹‘𝑞) +Q 𝑞) +Q
𝑡)
<Q (𝑠 +Q 𝑡)) → (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q (𝑠 +Q 𝑡)) |
70 | 59, 67, 69 | syl2anc 409 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) → (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q (𝑠 +Q 𝑡)) |
71 | | simpllr 524 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) → 𝑟 = (𝑠 +Q 𝑡)) |
72 | 70, 71 | breqtrrd 4010 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) ∧ ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠) → (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑟) |
73 | 72 | ex 114 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑟 ∈ (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) ∧ 𝑞 ∈ Q) → (((𝐹‘𝑞) +Q 𝑞) <Q
𝑠 → (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑟)) |
74 | 73 | reximdva 2568 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → (∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑠 → ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑟)) |
75 | 45, 74 | mpd 13 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑟) |
76 | | breq2 3986 |
. . . . . . . . 9
⊢ (𝑢 = 𝑟 → ((((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢 ↔ (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑟)) |
77 | 76 | rexbidv 2467 |
. . . . . . . 8
⊢ (𝑢 = 𝑟 → (∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢 ↔ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑟)) |
78 | 17 | rabex 4126 |
. . . . . . . . 9
⊢ {𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆)} ∈ V |
79 | 17 | rabex 4126 |
. . . . . . . . 9
⊢ {𝑢 ∈ Q ∣
∃𝑞 ∈
Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢} ∈ V |
80 | 78, 79 | op2nd 6115 |
. . . . . . . 8
⊢
(2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢} |
81 | 77, 80 | elrab2 2885 |
. . . . . . 7
⊢ (𝑟 ∈ (2nd
‘〈{𝑙 ∈
Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q
((𝐹‘𝑞) +Q
𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢}〉) ↔ (𝑟 ∈ Q ∧ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑟)) |
82 | 44, 75, 81 | sylanbrc 414 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ 𝑟 = (𝑠 +Q 𝑡)) → 𝑟 ∈ (2nd ‘〈{𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢}〉)) |
83 | 82 | ex 114 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) ∧ (𝑠 ∈ (2nd
‘𝐿) ∧ 𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → (𝑟 = (𝑠 +Q 𝑡) → 𝑟 ∈ (2nd ‘〈{𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢}〉))) |
84 | 83 | rexlimdvva 2591 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → (∃𝑠 ∈ (2nd
‘𝐿)∃𝑡 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)𝑟 = (𝑠 +Q 𝑡) → 𝑟 ∈ (2nd ‘〈{𝑙 ∈ Q ∣
∃𝑞 ∈
Q (𝑙
+Q 𝑞) <Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢}〉))) |
85 | 13, 84 | mpd 13 |
. . 3
⊢ ((𝜑 ∧ 𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉))) → 𝑟 ∈ (2nd
‘〈{𝑙 ∈
Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q
((𝐹‘𝑞) +Q
𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢}〉)) |
86 | 85 | ex 114 |
. 2
⊢ (𝜑 → (𝑟 ∈ (2nd ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) → 𝑟 ∈ (2nd
‘〈{𝑙 ∈
Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q
((𝐹‘𝑞) +Q
𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢}〉))) |
87 | 86 | ssrdv 3148 |
1
⊢ (𝜑 → (2nd
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑆}, {𝑢 ∣ 𝑆 <Q 𝑢}〉)) ⊆
(2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q ((𝐹‘𝑞) +Q 𝑆)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q (((𝐹‘𝑞) +Q 𝑞) +Q
𝑆)
<Q 𝑢}〉)) |