ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpofun GIF version

Theorem mpofun 5944
Description: The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012.)
Hypothesis
Ref Expression
mpofun.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpofun Fun 𝐹
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpofun
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqtr3 2185 . . . . . 6 ((𝑧 = 𝐶𝑤 = 𝐶) → 𝑧 = 𝑤)
21ad2ant2l 500 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) → 𝑧 = 𝑤)
32gen2 1438 . . . 4 𝑧𝑤((((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) → 𝑧 = 𝑤)
4 eqeq1 2172 . . . . . 6 (𝑧 = 𝑤 → (𝑧 = 𝐶𝑤 = 𝐶))
54anbi2d 460 . . . . 5 (𝑧 = 𝑤 → (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
65mo4 2075 . . . 4 (∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ∀𝑧𝑤((((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) → 𝑧 = 𝑤))
73, 6mpbir 145 . . 3 ∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)
87funoprab 5942 . 2 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
9 mpofun.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
10 df-mpo 5847 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
119, 10eqtri 2186 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
1211funeqi 5209 . 2 (Fun 𝐹 ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)})
138, 12mpbir 145 1 Fun 𝐹
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1341   = wceq 1343  ∃*wmo 2015  wcel 2136  Fun wfun 5182  {coprab 5843  cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-fun 5190  df-oprab 5846  df-mpo 5847
This theorem is referenced by:  elmpocl  6036  ofexg  6054  mpoexxg  6178  mpoexw  6181  mpoxopn0yelv  6207
  Copyright terms: Public domain W3C validator