Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmpox GIF version

Theorem cbvmpox 5849
 Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpo 5850 allows 𝐵 to be a function of 𝑥. (Contributed by NM, 29-Dec-2014.)
Hypotheses
Ref Expression
cbvmpox.1 𝑧𝐵
cbvmpox.2 𝑥𝐷
cbvmpox.3 𝑧𝐶
cbvmpox.4 𝑤𝐶
cbvmpox.5 𝑥𝐸
cbvmpox.6 𝑦𝐸
cbvmpox.7 (𝑥 = 𝑧𝐵 = 𝐷)
cbvmpox.8 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐸)
Assertion
Ref Expression
cbvmpox (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐷𝐸)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵   𝑦,𝐷
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvmpox
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 nfv 1508 . . . . 5 𝑧 𝑥𝐴
2 cbvmpox.1 . . . . . 6 𝑧𝐵
32nfcri 2275 . . . . 5 𝑧 𝑦𝐵
41, 3nfan 1544 . . . 4 𝑧(𝑥𝐴𝑦𝐵)
5 cbvmpox.3 . . . . 5 𝑧𝐶
65nfeq2 2293 . . . 4 𝑧 𝑢 = 𝐶
74, 6nfan 1544 . . 3 𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)
8 nfv 1508 . . . . 5 𝑤 𝑥𝐴
9 nfcv 2281 . . . . . 6 𝑤𝐵
109nfcri 2275 . . . . 5 𝑤 𝑦𝐵
118, 10nfan 1544 . . . 4 𝑤(𝑥𝐴𝑦𝐵)
12 cbvmpox.4 . . . . 5 𝑤𝐶
1312nfeq2 2293 . . . 4 𝑤 𝑢 = 𝐶
1411, 13nfan 1544 . . 3 𝑤((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)
15 nfv 1508 . . . . 5 𝑥 𝑧𝐴
16 cbvmpox.2 . . . . . 6 𝑥𝐷
1716nfcri 2275 . . . . 5 𝑥 𝑤𝐷
1815, 17nfan 1544 . . . 4 𝑥(𝑧𝐴𝑤𝐷)
19 cbvmpox.5 . . . . 5 𝑥𝐸
2019nfeq2 2293 . . . 4 𝑥 𝑢 = 𝐸
2118, 20nfan 1544 . . 3 𝑥((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)
22 nfv 1508 . . . 4 𝑦(𝑧𝐴𝑤𝐷)
23 cbvmpox.6 . . . . 5 𝑦𝐸
2423nfeq2 2293 . . . 4 𝑦 𝑢 = 𝐸
2522, 24nfan 1544 . . 3 𝑦((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)
26 eleq1 2202 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2726adantr 274 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐴𝑧𝐴))
28 cbvmpox.7 . . . . . . 7 (𝑥 = 𝑧𝐵 = 𝐷)
2928eleq2d 2209 . . . . . 6 (𝑥 = 𝑧 → (𝑦𝐵𝑦𝐷))
30 eleq1 2202 . . . . . 6 (𝑦 = 𝑤 → (𝑦𝐷𝑤𝐷))
3129, 30sylan9bb 457 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑦𝐵𝑤𝐷))
3227, 31anbi12d 464 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐴𝑦𝐵) ↔ (𝑧𝐴𝑤𝐷)))
33 cbvmpox.8 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐸)
3433eqeq2d 2151 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑢 = 𝐶𝑢 = 𝐸))
3532, 34anbi12d 464 . . 3 ((𝑥 = 𝑧𝑦 = 𝑤) → (((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶) ↔ ((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)))
367, 14, 21, 25, 35cbvoprab12 5845 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)} = {⟨⟨𝑧, 𝑤⟩, 𝑢⟩ ∣ ((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)}
37 df-mpo 5779 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)}
38 df-mpo 5779 . 2 (𝑧𝐴, 𝑤𝐷𝐸) = {⟨⟨𝑧, 𝑤⟩, 𝑢⟩ ∣ ((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)}
3936, 37, 383eqtr4i 2170 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐷𝐸)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1331   ∈ wcel 1480  Ⅎwnfc 2268  {coprab 5775   ∈ cmpo 5776 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-opab 3990  df-oprab 5778  df-mpo 5779 This theorem is referenced by:  cbvmpo  5850  mpomptsx  6095  dmmpossx  6097
 Copyright terms: Public domain W3C validator