ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmpox GIF version

Theorem cbvmpox 5947
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpo 5948 allows 𝐵 to be a function of 𝑥. (Contributed by NM, 29-Dec-2014.)
Hypotheses
Ref Expression
cbvmpox.1 𝑧𝐵
cbvmpox.2 𝑥𝐷
cbvmpox.3 𝑧𝐶
cbvmpox.4 𝑤𝐶
cbvmpox.5 𝑥𝐸
cbvmpox.6 𝑦𝐸
cbvmpox.7 (𝑥 = 𝑧𝐵 = 𝐷)
cbvmpox.8 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐸)
Assertion
Ref Expression
cbvmpox (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐷𝐸)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵   𝑦,𝐷
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvmpox
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 nfv 1528 . . . . 5 𝑧 𝑥𝐴
2 cbvmpox.1 . . . . . 6 𝑧𝐵
32nfcri 2313 . . . . 5 𝑧 𝑦𝐵
41, 3nfan 1565 . . . 4 𝑧(𝑥𝐴𝑦𝐵)
5 cbvmpox.3 . . . . 5 𝑧𝐶
65nfeq2 2331 . . . 4 𝑧 𝑢 = 𝐶
74, 6nfan 1565 . . 3 𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)
8 nfv 1528 . . . . 5 𝑤 𝑥𝐴
9 nfcv 2319 . . . . . 6 𝑤𝐵
109nfcri 2313 . . . . 5 𝑤 𝑦𝐵
118, 10nfan 1565 . . . 4 𝑤(𝑥𝐴𝑦𝐵)
12 cbvmpox.4 . . . . 5 𝑤𝐶
1312nfeq2 2331 . . . 4 𝑤 𝑢 = 𝐶
1411, 13nfan 1565 . . 3 𝑤((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)
15 nfv 1528 . . . . 5 𝑥 𝑧𝐴
16 cbvmpox.2 . . . . . 6 𝑥𝐷
1716nfcri 2313 . . . . 5 𝑥 𝑤𝐷
1815, 17nfan 1565 . . . 4 𝑥(𝑧𝐴𝑤𝐷)
19 cbvmpox.5 . . . . 5 𝑥𝐸
2019nfeq2 2331 . . . 4 𝑥 𝑢 = 𝐸
2118, 20nfan 1565 . . 3 𝑥((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)
22 nfv 1528 . . . 4 𝑦(𝑧𝐴𝑤𝐷)
23 cbvmpox.6 . . . . 5 𝑦𝐸
2423nfeq2 2331 . . . 4 𝑦 𝑢 = 𝐸
2522, 24nfan 1565 . . 3 𝑦((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)
26 eleq1 2240 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2726adantr 276 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐴𝑧𝐴))
28 cbvmpox.7 . . . . . . 7 (𝑥 = 𝑧𝐵 = 𝐷)
2928eleq2d 2247 . . . . . 6 (𝑥 = 𝑧 → (𝑦𝐵𝑦𝐷))
30 eleq1 2240 . . . . . 6 (𝑦 = 𝑤 → (𝑦𝐷𝑤𝐷))
3129, 30sylan9bb 462 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑦𝐵𝑤𝐷))
3227, 31anbi12d 473 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐴𝑦𝐵) ↔ (𝑧𝐴𝑤𝐷)))
33 cbvmpox.8 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐸)
3433eqeq2d 2189 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑢 = 𝐶𝑢 = 𝐸))
3532, 34anbi12d 473 . . 3 ((𝑥 = 𝑧𝑦 = 𝑤) → (((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶) ↔ ((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)))
367, 14, 21, 25, 35cbvoprab12 5943 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)} = {⟨⟨𝑧, 𝑤⟩, 𝑢⟩ ∣ ((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)}
37 df-mpo 5874 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)}
38 df-mpo 5874 . 2 (𝑧𝐴, 𝑤𝐷𝐸) = {⟨⟨𝑧, 𝑤⟩, 𝑢⟩ ∣ ((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)}
3936, 37, 383eqtr4i 2208 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐷𝐸)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wnfc 2306  {coprab 5870  cmpo 5871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-opab 4062  df-oprab 5873  df-mpo 5874
This theorem is referenced by:  cbvmpo  5948  mpomptsx  6192  dmmpossx  6194
  Copyright terms: Public domain W3C validator