ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmmpo GIF version

Theorem reldmmpo 6115
Description: The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
reldmmpo Rel dom 𝐹
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem reldmmpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 reldmoprab 6088 . 2 Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
2 rngop.1 . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
3 df-mpo 6005 . . . . 5 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
42, 3eqtri 2250 . . . 4 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
54dmeqi 4923 . . 3 dom 𝐹 = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
65releqi 4801 . 2 (Rel dom 𝐹 ↔ Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)})
71, 6mpbir 146 1 Rel dom 𝐹
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  dom cdm 4718  Rel wrel 4723  {coprab 6001  cmpo 6002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-dm 4728  df-oprab 6004  df-mpo 6005
This theorem is referenced by:  reldmmap  6802  reldmsets  13056  reldmress  13091  reldmprds  13296  reldmghm  13774  reldmpsr  14623  reldmmpl  14647
  Copyright terms: Public domain W3C validator