| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resmpo | GIF version | ||
| Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013.) |
| Ref | Expression |
|---|---|
| resmpo | ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) ↾ (𝐶 × 𝐷)) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resoprab2 6055 | . 2 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐸)} ↾ (𝐶 × 𝐷)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐸)}) | |
| 2 | df-mpo 5962 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐸)} | |
| 3 | 2 | reseq1i 4964 | . 2 ⊢ ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) ↾ (𝐶 × 𝐷)) = ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐸)} ↾ (𝐶 × 𝐷)) |
| 4 | df-mpo 5962 | . 2 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐸)} | |
| 5 | 1, 3, 4 | 3eqtr4g 2264 | 1 ⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) ↾ (𝐶 × 𝐷)) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝐸)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ⊆ wss 3170 × cxp 4681 ↾ cres 4685 {coprab 5958 ∈ cmpo 5959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-opab 4114 df-xp 4689 df-rel 4690 df-res 4695 df-oprab 5961 df-mpo 5962 |
| This theorem is referenced by: ofmres 6234 divfnzn 9762 txss12 14813 txbasval 14814 cnmpt2res 14844 |
| Copyright terms: Public domain | W3C validator |