| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elmpocl | GIF version | ||
| Description: If a two-parameter class is inhabited, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| elmpocl.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| elmpocl | ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmpocl.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | df-mpo 6005 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 3 | 1, 2 | eqtri 2250 | . . . . 5 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 4 | 3 | dmeqi 4923 | . . . 4 ⊢ dom 𝐹 = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 5 | dmoprabss 6085 | . . . 4 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} ⊆ (𝐴 × 𝐵) | |
| 6 | 4, 5 | eqsstri 3256 | . . 3 ⊢ dom 𝐹 ⊆ (𝐴 × 𝐵) |
| 7 | 1 | mpofun 6105 | . . . . . 6 ⊢ Fun 𝐹 |
| 8 | funrel 5334 | . . . . . 6 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ Rel 𝐹 |
| 10 | relelfvdm 5658 | . . . . 5 ⊢ ((Rel 𝐹 ∧ 𝑋 ∈ (𝐹‘〈𝑆, 𝑇〉)) → 〈𝑆, 𝑇〉 ∈ dom 𝐹) | |
| 11 | 9, 10 | mpan 424 | . . . 4 ⊢ (𝑋 ∈ (𝐹‘〈𝑆, 𝑇〉) → 〈𝑆, 𝑇〉 ∈ dom 𝐹) |
| 12 | df-ov 6003 | . . . 4 ⊢ (𝑆𝐹𝑇) = (𝐹‘〈𝑆, 𝑇〉) | |
| 13 | 11, 12 | eleq2s 2324 | . . 3 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 〈𝑆, 𝑇〉 ∈ dom 𝐹) |
| 14 | 6, 13 | sselid 3222 | . 2 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 〈𝑆, 𝑇〉 ∈ (𝐴 × 𝐵)) |
| 15 | opelxp 4748 | . 2 ⊢ (〈𝑆, 𝑇〉 ∈ (𝐴 × 𝐵) ↔ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) | |
| 16 | 14, 15 | sylib 122 | 1 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 〈cop 3669 × cxp 4716 dom cdm 4718 Rel wrel 4723 Fun wfun 5311 ‘cfv 5317 (class class class)co 6000 {coprab 6001 ∈ cmpo 6002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 |
| This theorem is referenced by: elmpocl1 6200 elmpocl2 6201 elovmpo 6203 elovmporab 6204 elovmporab1w 6205 elpmi 6812 elmapex 6814 pmsspw 6828 ixxssxr 10092 elixx3g 10093 ixxssixx 10094 eliooxr 10119 elfz2 10207 restsspw 13277 ismhm 13489 isghm 13775 isrhm 14116 rimrcl 14118 restrcl 14835 ssrest 14850 iscn2 14868 ishmeo 14972 limcrcl 15326 |
| Copyright terms: Public domain | W3C validator |