ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmpocl GIF version

Theorem elmpocl 6092
Description: If a two-parameter class is inhabited, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypothesis
Ref Expression
elmpocl.f 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
elmpocl (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆𝐴𝑇𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem elmpocl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elmpocl.f . . . . . 6 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 df-mpo 5902 . . . . . 6 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2eqtri 2210 . . . . 5 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
43dmeqi 4846 . . . 4 dom 𝐹 = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
5 dmoprabss 5979 . . . 4 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} ⊆ (𝐴 × 𝐵)
64, 5eqsstri 3202 . . 3 dom 𝐹 ⊆ (𝐴 × 𝐵)
71mpofun 5999 . . . . . 6 Fun 𝐹
8 funrel 5252 . . . . . 6 (Fun 𝐹 → Rel 𝐹)
97, 8ax-mp 5 . . . . 5 Rel 𝐹
10 relelfvdm 5566 . . . . 5 ((Rel 𝐹𝑋 ∈ (𝐹‘⟨𝑆, 𝑇⟩)) → ⟨𝑆, 𝑇⟩ ∈ dom 𝐹)
119, 10mpan 424 . . . 4 (𝑋 ∈ (𝐹‘⟨𝑆, 𝑇⟩) → ⟨𝑆, 𝑇⟩ ∈ dom 𝐹)
12 df-ov 5900 . . . 4 (𝑆𝐹𝑇) = (𝐹‘⟨𝑆, 𝑇⟩)
1311, 12eleq2s 2284 . . 3 (𝑋 ∈ (𝑆𝐹𝑇) → ⟨𝑆, 𝑇⟩ ∈ dom 𝐹)
146, 13sselid 3168 . 2 (𝑋 ∈ (𝑆𝐹𝑇) → ⟨𝑆, 𝑇⟩ ∈ (𝐴 × 𝐵))
15 opelxp 4674 . 2 (⟨𝑆, 𝑇⟩ ∈ (𝐴 × 𝐵) ↔ (𝑆𝐴𝑇𝐵))
1614, 15sylib 122 1 (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆𝐴𝑇𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  cop 3610   × cxp 4642  dom cdm 4644  Rel wrel 4649  Fun wfun 5229  cfv 5235  (class class class)co 5897  {coprab 5898  cmpo 5899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902
This theorem is referenced by:  elmpocl1  6093  elmpocl2  6094  elovmpo  6096  elpmi  6694  elmapex  6696  pmsspw  6710  ixxssxr  9932  elixx3g  9933  ixxssixx  9934  eliooxr  9959  elfz2  10047  restsspw  12757  ismhm  12928  isghm  13199  isrhm  13525  rimrcl  13527  restrcl  14144  ssrest  14159  iscn2  14177  ishmeo  14281  limcrcl  14604
  Copyright terms: Public domain W3C validator