![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elmpocl | GIF version |
Description: If a two-parameter class is inhabited, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
elmpocl.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
elmpocl | ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmpocl.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | df-mpo 5882 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
3 | 1, 2 | eqtri 2198 | . . . . 5 ⊢ 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
4 | 3 | dmeqi 4830 | . . . 4 ⊢ dom 𝐹 = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
5 | dmoprabss 5959 | . . . 4 ⊢ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} ⊆ (𝐴 × 𝐵) | |
6 | 4, 5 | eqsstri 3189 | . . 3 ⊢ dom 𝐹 ⊆ (𝐴 × 𝐵) |
7 | 1 | mpofun 5979 | . . . . . 6 ⊢ Fun 𝐹 |
8 | funrel 5235 | . . . . . 6 ⊢ (Fun 𝐹 → Rel 𝐹) | |
9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ Rel 𝐹 |
10 | relelfvdm 5549 | . . . . 5 ⊢ ((Rel 𝐹 ∧ 𝑋 ∈ (𝐹‘⟨𝑆, 𝑇⟩)) → ⟨𝑆, 𝑇⟩ ∈ dom 𝐹) | |
11 | 9, 10 | mpan 424 | . . . 4 ⊢ (𝑋 ∈ (𝐹‘⟨𝑆, 𝑇⟩) → ⟨𝑆, 𝑇⟩ ∈ dom 𝐹) |
12 | df-ov 5880 | . . . 4 ⊢ (𝑆𝐹𝑇) = (𝐹‘⟨𝑆, 𝑇⟩) | |
13 | 11, 12 | eleq2s 2272 | . . 3 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → ⟨𝑆, 𝑇⟩ ∈ dom 𝐹) |
14 | 6, 13 | sselid 3155 | . 2 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → ⟨𝑆, 𝑇⟩ ∈ (𝐴 × 𝐵)) |
15 | opelxp 4658 | . 2 ⊢ (⟨𝑆, 𝑇⟩ ∈ (𝐴 × 𝐵) ↔ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) | |
16 | 14, 15 | sylib 122 | 1 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ⟨cop 3597 × cxp 4626 dom cdm 4628 Rel wrel 4633 Fun wfun 5212 ‘cfv 5218 (class class class)co 5877 {coprab 5878 ∈ cmpo 5879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 |
This theorem is referenced by: elmpocl1 6072 elmpocl2 6073 elovmpo 6074 elpmi 6669 elmapex 6671 pmsspw 6685 ixxssxr 9902 elixx3g 9903 ixxssixx 9904 eliooxr 9929 elfz2 10017 restsspw 12703 ismhm 12858 restrcl 13752 ssrest 13767 iscn2 13785 ishmeo 13889 limcrcl 14212 |
Copyright terms: Public domain | W3C validator |