ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmpocl GIF version

Theorem elmpocl 6113
Description: If a two-parameter class is inhabited, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypothesis
Ref Expression
elmpocl.f 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
elmpocl (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆𝐴𝑇𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem elmpocl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elmpocl.f . . . . . 6 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 df-mpo 5923 . . . . . 6 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2eqtri 2214 . . . . 5 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
43dmeqi 4863 . . . 4 dom 𝐹 = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
5 dmoprabss 6000 . . . 4 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} ⊆ (𝐴 × 𝐵)
64, 5eqsstri 3211 . . 3 dom 𝐹 ⊆ (𝐴 × 𝐵)
71mpofun 6020 . . . . . 6 Fun 𝐹
8 funrel 5271 . . . . . 6 (Fun 𝐹 → Rel 𝐹)
97, 8ax-mp 5 . . . . 5 Rel 𝐹
10 relelfvdm 5586 . . . . 5 ((Rel 𝐹𝑋 ∈ (𝐹‘⟨𝑆, 𝑇⟩)) → ⟨𝑆, 𝑇⟩ ∈ dom 𝐹)
119, 10mpan 424 . . . 4 (𝑋 ∈ (𝐹‘⟨𝑆, 𝑇⟩) → ⟨𝑆, 𝑇⟩ ∈ dom 𝐹)
12 df-ov 5921 . . . 4 (𝑆𝐹𝑇) = (𝐹‘⟨𝑆, 𝑇⟩)
1311, 12eleq2s 2288 . . 3 (𝑋 ∈ (𝑆𝐹𝑇) → ⟨𝑆, 𝑇⟩ ∈ dom 𝐹)
146, 13sselid 3177 . 2 (𝑋 ∈ (𝑆𝐹𝑇) → ⟨𝑆, 𝑇⟩ ∈ (𝐴 × 𝐵))
15 opelxp 4689 . 2 (⟨𝑆, 𝑇⟩ ∈ (𝐴 × 𝐵) ↔ (𝑆𝐴𝑇𝐵))
1614, 15sylib 122 1 (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆𝐴𝑇𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  cop 3621   × cxp 4657  dom cdm 4659  Rel wrel 4664  Fun wfun 5248  cfv 5254  (class class class)co 5918  {coprab 5919  cmpo 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923
This theorem is referenced by:  elmpocl1  6114  elmpocl2  6115  elovmpo  6117  elovmporab  6118  elovmporab1w  6119  elpmi  6721  elmapex  6723  pmsspw  6737  ixxssxr  9966  elixx3g  9967  ixxssixx  9968  eliooxr  9993  elfz2  10081  restsspw  12860  ismhm  13033  isghm  13313  isrhm  13654  rimrcl  13656  restrcl  14335  ssrest  14350  iscn2  14368  ishmeo  14472  limcrcl  14812
  Copyright terms: Public domain W3C validator