Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elmpocl | GIF version |
Description: If a two-parameter class is inhabited, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
elmpocl.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
elmpocl | ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmpocl.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | df-mpo 5870 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
3 | 1, 2 | eqtri 2196 | . . . . 5 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
4 | 3 | dmeqi 4821 | . . . 4 ⊢ dom 𝐹 = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
5 | dmoprabss 5947 | . . . 4 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} ⊆ (𝐴 × 𝐵) | |
6 | 4, 5 | eqsstri 3185 | . . 3 ⊢ dom 𝐹 ⊆ (𝐴 × 𝐵) |
7 | 1 | mpofun 5967 | . . . . . 6 ⊢ Fun 𝐹 |
8 | funrel 5225 | . . . . . 6 ⊢ (Fun 𝐹 → Rel 𝐹) | |
9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ Rel 𝐹 |
10 | relelfvdm 5539 | . . . . 5 ⊢ ((Rel 𝐹 ∧ 𝑋 ∈ (𝐹‘〈𝑆, 𝑇〉)) → 〈𝑆, 𝑇〉 ∈ dom 𝐹) | |
11 | 9, 10 | mpan 424 | . . . 4 ⊢ (𝑋 ∈ (𝐹‘〈𝑆, 𝑇〉) → 〈𝑆, 𝑇〉 ∈ dom 𝐹) |
12 | df-ov 5868 | . . . 4 ⊢ (𝑆𝐹𝑇) = (𝐹‘〈𝑆, 𝑇〉) | |
13 | 11, 12 | eleq2s 2270 | . . 3 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 〈𝑆, 𝑇〉 ∈ dom 𝐹) |
14 | 6, 13 | sselid 3151 | . 2 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 〈𝑆, 𝑇〉 ∈ (𝐴 × 𝐵)) |
15 | opelxp 4650 | . 2 ⊢ (〈𝑆, 𝑇〉 ∈ (𝐴 × 𝐵) ↔ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) | |
16 | 14, 15 | sylib 122 | 1 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 〈cop 3592 × cxp 4618 dom cdm 4620 Rel wrel 4625 Fun wfun 5202 ‘cfv 5208 (class class class)co 5865 {coprab 5866 ∈ cmpo 5867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 |
This theorem is referenced by: elmpocl1 6060 elmpocl2 6061 elovmpo 6062 elpmi 6657 elmapex 6659 pmsspw 6673 ixxssxr 9871 elixx3g 9872 ixxssixx 9873 eliooxr 9898 elfz2 9986 restsspw 12629 ismhm 12725 restrcl 13247 ssrest 13262 iscn2 13280 ishmeo 13384 limcrcl 13707 |
Copyright terms: Public domain | W3C validator |