Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infiexmid | GIF version |
Description: If the intersection of any finite set and any other set is finite, excluded middle follows. (Contributed by Jim Kingdon, 5-Feb-2022.) |
Ref | Expression |
---|---|
infiexmid.1 | ⊢ (𝑥 ∈ Fin → (𝑥 ∩ 𝑦) ∈ Fin) |
Ref | Expression |
---|---|
infiexmid | ⊢ (𝜑 ∨ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss1 3326 | . . . . . 6 ⊢ (𝑦 ⊆ 𝑥 ↔ (𝑥 ∩ 𝑦) = 𝑦) | |
2 | 1 | biimpi 119 | . . . . 5 ⊢ (𝑦 ⊆ 𝑥 → (𝑥 ∩ 𝑦) = 𝑦) |
3 | 2 | adantl 275 | . . . 4 ⊢ ((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → (𝑥 ∩ 𝑦) = 𝑦) |
4 | infiexmid.1 | . . . . 5 ⊢ (𝑥 ∈ Fin → (𝑥 ∩ 𝑦) ∈ Fin) | |
5 | 4 | adantr 274 | . . . 4 ⊢ ((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → (𝑥 ∩ 𝑦) ∈ Fin) |
6 | 3, 5 | eqeltrrd 2244 | . . 3 ⊢ ((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) |
7 | 6 | gen2 1438 | . 2 ⊢ ∀𝑥∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) |
8 | 7 | ssfiexmid 6842 | 1 ⊢ (𝜑 ∨ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 = wceq 1343 ∈ wcel 2136 ∩ cin 3115 ⊆ wss 3116 Fincfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1o 6384 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |