![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > infiexmid | GIF version |
Description: If the intersection of any finite set and any other set is finite, excluded middle follows. (Contributed by Jim Kingdon, 5-Feb-2022.) |
Ref | Expression |
---|---|
infiexmid.1 | ⊢ (𝑥 ∈ Fin → (𝑥 ∩ 𝑦) ∈ Fin) |
Ref | Expression |
---|---|
infiexmid | ⊢ (𝜑 ∨ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss1 3364 | . . . . . 6 ⊢ (𝑦 ⊆ 𝑥 ↔ (𝑥 ∩ 𝑦) = 𝑦) | |
2 | 1 | biimpi 120 | . . . . 5 ⊢ (𝑦 ⊆ 𝑥 → (𝑥 ∩ 𝑦) = 𝑦) |
3 | 2 | adantl 277 | . . . 4 ⊢ ((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → (𝑥 ∩ 𝑦) = 𝑦) |
4 | infiexmid.1 | . . . . 5 ⊢ (𝑥 ∈ Fin → (𝑥 ∩ 𝑦) ∈ Fin) | |
5 | 4 | adantr 276 | . . . 4 ⊢ ((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → (𝑥 ∩ 𝑦) ∈ Fin) |
6 | 3, 5 | eqeltrrd 2271 | . . 3 ⊢ ((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) |
7 | 6 | gen2 1461 | . 2 ⊢ ∀𝑥∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) |
8 | 7 | ssfiexmid 6934 | 1 ⊢ (𝜑 ∨ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ∩ cin 3153 ⊆ wss 3154 Fincfn 6796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-1o 6471 df-er 6589 df-en 6797 df-fin 6799 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |