ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infiexmid GIF version

Theorem infiexmid 7039
Description: If the intersection of any finite set and any other set is finite, excluded middle follows. (Contributed by Jim Kingdon, 5-Feb-2022.)
Hypothesis
Ref Expression
infiexmid.1 (𝑥 ∈ Fin → (𝑥𝑦) ∈ Fin)
Assertion
Ref Expression
infiexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem infiexmid
StepHypRef Expression
1 dfss1 3408 . . . . . 6 (𝑦𝑥 ↔ (𝑥𝑦) = 𝑦)
21biimpi 120 . . . . 5 (𝑦𝑥 → (𝑥𝑦) = 𝑦)
32adantl 277 . . . 4 ((𝑥 ∈ Fin ∧ 𝑦𝑥) → (𝑥𝑦) = 𝑦)
4 infiexmid.1 . . . . 5 (𝑥 ∈ Fin → (𝑥𝑦) ∈ Fin)
54adantr 276 . . . 4 ((𝑥 ∈ Fin ∧ 𝑦𝑥) → (𝑥𝑦) ∈ Fin)
63, 5eqeltrrd 2307 . . 3 ((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
76gen2 1496 . 2 𝑥𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
87ssfiexmid 7038 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713   = wceq 1395  wcel 2200  cin 3196  wss 3197  Fincfn 6887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1o 6562  df-er 6680  df-en 6888  df-fin 6890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator