ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infiexmid GIF version

Theorem infiexmid 6843
Description: If the intersection of any finite set and any other set is finite, excluded middle follows. (Contributed by Jim Kingdon, 5-Feb-2022.)
Hypothesis
Ref Expression
infiexmid.1 (𝑥 ∈ Fin → (𝑥𝑦) ∈ Fin)
Assertion
Ref Expression
infiexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem infiexmid
StepHypRef Expression
1 dfss1 3326 . . . . . 6 (𝑦𝑥 ↔ (𝑥𝑦) = 𝑦)
21biimpi 119 . . . . 5 (𝑦𝑥 → (𝑥𝑦) = 𝑦)
32adantl 275 . . . 4 ((𝑥 ∈ Fin ∧ 𝑦𝑥) → (𝑥𝑦) = 𝑦)
4 infiexmid.1 . . . . 5 (𝑥 ∈ Fin → (𝑥𝑦) ∈ Fin)
54adantr 274 . . . 4 ((𝑥 ∈ Fin ∧ 𝑦𝑥) → (𝑥𝑦) ∈ Fin)
63, 5eqeltrrd 2244 . . 3 ((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
76gen2 1438 . 2 𝑥𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
87ssfiexmid 6842 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698   = wceq 1343  wcel 2136  cin 3115  wss 3116  Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1o 6384  df-er 6501  df-en 6707  df-fin 6709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator