![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpimasn | GIF version |
Description: The image of a singleton by a cross product. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
Ref | Expression |
---|---|
xpimasn | ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snmg 3736 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 𝑥 ∈ {𝑋}) | |
2 | snssi 3762 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → {𝑋} ⊆ 𝐴) | |
3 | dfss1 3363 | . . . . . 6 ⊢ ({𝑋} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑋}) = {𝑋}) | |
4 | 2, 3 | sylib 122 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (𝐴 ∩ {𝑋}) = {𝑋}) |
5 | 4 | eleq2d 2263 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (𝑥 ∈ (𝐴 ∩ {𝑋}) ↔ 𝑥 ∈ {𝑋})) |
6 | 5 | exbidv 1836 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (∃𝑥 𝑥 ∈ (𝐴 ∩ {𝑋}) ↔ ∃𝑥 𝑥 ∈ {𝑋})) |
7 | 1, 6 | mpbird 167 | . 2 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 𝑥 ∈ (𝐴 ∩ {𝑋})) |
8 | xpima2m 5113 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ {𝑋}) → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) | |
9 | 7, 8 | syl 14 | 1 ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∩ cin 3152 ⊆ wss 3153 {csn 3618 × cxp 4657 “ cima 4662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 |
This theorem is referenced by: imasnopn 14467 |
Copyright terms: Public domain | W3C validator |