Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpimasn | GIF version |
Description: The image of a singleton by a cross product. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
Ref | Expression |
---|---|
xpimasn | ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snmg 3694 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 𝑥 ∈ {𝑋}) | |
2 | snssi 3717 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → {𝑋} ⊆ 𝐴) | |
3 | dfss1 3326 | . . . . . 6 ⊢ ({𝑋} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑋}) = {𝑋}) | |
4 | 2, 3 | sylib 121 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (𝐴 ∩ {𝑋}) = {𝑋}) |
5 | 4 | eleq2d 2236 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (𝑥 ∈ (𝐴 ∩ {𝑋}) ↔ 𝑥 ∈ {𝑋})) |
6 | 5 | exbidv 1813 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (∃𝑥 𝑥 ∈ (𝐴 ∩ {𝑋}) ↔ ∃𝑥 𝑥 ∈ {𝑋})) |
7 | 1, 6 | mpbird 166 | . 2 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 𝑥 ∈ (𝐴 ∩ {𝑋})) |
8 | xpima2m 5051 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ {𝑋}) → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) | |
9 | 7, 8 | syl 14 | 1 ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ∩ cin 3115 ⊆ wss 3116 {csn 3576 × cxp 4602 “ cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: imasnopn 12939 |
Copyright terms: Public domain | W3C validator |