| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpimasn | GIF version | ||
| Description: The image of a singleton by a cross product. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
| Ref | Expression |
|---|---|
| xpimasn | ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snmg 3740 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 𝑥 ∈ {𝑋}) | |
| 2 | snssi 3766 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → {𝑋} ⊆ 𝐴) | |
| 3 | dfss1 3367 | . . . . . 6 ⊢ ({𝑋} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑋}) = {𝑋}) | |
| 4 | 2, 3 | sylib 122 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (𝐴 ∩ {𝑋}) = {𝑋}) |
| 5 | 4 | eleq2d 2266 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (𝑥 ∈ (𝐴 ∩ {𝑋}) ↔ 𝑥 ∈ {𝑋})) |
| 6 | 5 | exbidv 1839 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (∃𝑥 𝑥 ∈ (𝐴 ∩ {𝑋}) ↔ ∃𝑥 𝑥 ∈ {𝑋})) |
| 7 | 1, 6 | mpbird 167 | . 2 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 𝑥 ∈ (𝐴 ∩ {𝑋})) |
| 8 | xpima2m 5117 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ {𝑋}) → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) | |
| 9 | 7, 8 | syl 14 | 1 ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ∩ cin 3156 ⊆ wss 3157 {csn 3622 × cxp 4661 “ cima 4666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 |
| This theorem is referenced by: imasnopn 14535 |
| Copyright terms: Public domain | W3C validator |