ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpimasn GIF version

Theorem xpimasn 5052
Description: The image of a singleton by a cross product. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Assertion
Ref Expression
xpimasn (𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)

Proof of Theorem xpimasn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 snmg 3694 . . 3 (𝑋𝐴 → ∃𝑥 𝑥 ∈ {𝑋})
2 snssi 3717 . . . . . 6 (𝑋𝐴 → {𝑋} ⊆ 𝐴)
3 dfss1 3326 . . . . . 6 ({𝑋} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑋}) = {𝑋})
42, 3sylib 121 . . . . 5 (𝑋𝐴 → (𝐴 ∩ {𝑋}) = {𝑋})
54eleq2d 2236 . . . 4 (𝑋𝐴 → (𝑥 ∈ (𝐴 ∩ {𝑋}) ↔ 𝑥 ∈ {𝑋}))
65exbidv 1813 . . 3 (𝑋𝐴 → (∃𝑥 𝑥 ∈ (𝐴 ∩ {𝑋}) ↔ ∃𝑥 𝑥 ∈ {𝑋}))
71, 6mpbird 166 . 2 (𝑋𝐴 → ∃𝑥 𝑥 ∈ (𝐴 ∩ {𝑋}))
8 xpima2m 5051 . 2 (∃𝑥 𝑥 ∈ (𝐴 ∩ {𝑋}) → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)
97, 8syl 14 1 (𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wex 1480  wcel 2136  cin 3115  wss 3116  {csn 3576   × cxp 4602  cima 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617
This theorem is referenced by:  imasnopn  12939
  Copyright terms: Public domain W3C validator