ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpimasn GIF version

Theorem xpimasn 5079
Description: The image of a singleton by a cross product. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Assertion
Ref Expression
xpimasn (𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)

Proof of Theorem xpimasn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 snmg 3712 . . 3 (𝑋𝐴 → ∃𝑥 𝑥 ∈ {𝑋})
2 snssi 3738 . . . . . 6 (𝑋𝐴 → {𝑋} ⊆ 𝐴)
3 dfss1 3341 . . . . . 6 ({𝑋} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑋}) = {𝑋})
42, 3sylib 122 . . . . 5 (𝑋𝐴 → (𝐴 ∩ {𝑋}) = {𝑋})
54eleq2d 2247 . . . 4 (𝑋𝐴 → (𝑥 ∈ (𝐴 ∩ {𝑋}) ↔ 𝑥 ∈ {𝑋}))
65exbidv 1825 . . 3 (𝑋𝐴 → (∃𝑥 𝑥 ∈ (𝐴 ∩ {𝑋}) ↔ ∃𝑥 𝑥 ∈ {𝑋}))
71, 6mpbird 167 . 2 (𝑋𝐴 → ∃𝑥 𝑥 ∈ (𝐴 ∩ {𝑋}))
8 xpima2m 5078 . 2 (∃𝑥 𝑥 ∈ (𝐴 ∩ {𝑋}) → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)
97, 8syl 14 1 (𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wex 1492  wcel 2148  cin 3130  wss 3131  {csn 3594   × cxp 4626  cima 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641
This theorem is referenced by:  imasnopn  13884
  Copyright terms: Public domain W3C validator