| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpimasn | GIF version | ||
| Description: The image of a singleton by a cross product. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
| Ref | Expression |
|---|---|
| xpimasn | ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snmg 3784 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 𝑥 ∈ {𝑋}) | |
| 2 | snssi 3811 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → {𝑋} ⊆ 𝐴) | |
| 3 | dfss1 3408 | . . . . . 6 ⊢ ({𝑋} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑋}) = {𝑋}) | |
| 4 | 2, 3 | sylib 122 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (𝐴 ∩ {𝑋}) = {𝑋}) |
| 5 | 4 | eleq2d 2299 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (𝑥 ∈ (𝐴 ∩ {𝑋}) ↔ 𝑥 ∈ {𝑋})) |
| 6 | 5 | exbidv 1871 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (∃𝑥 𝑥 ∈ (𝐴 ∩ {𝑋}) ↔ ∃𝑥 𝑥 ∈ {𝑋})) |
| 7 | 1, 6 | mpbird 167 | . 2 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 𝑥 ∈ (𝐴 ∩ {𝑋})) |
| 8 | xpima2m 5175 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ {𝑋}) → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) | |
| 9 | 7, 8 | syl 14 | 1 ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∩ cin 3196 ⊆ wss 3197 {csn 3666 × cxp 4716 “ cima 4721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 |
| This theorem is referenced by: imasnopn 14967 |
| Copyright terms: Public domain | W3C validator |