Step | Hyp | Ref
| Expression |
1 | | prssi 3731 |
. . . . . 6
⊢ ((𝑢 ∈ On ∧ 𝑣 ∈ On) → {𝑢, 𝑣} ⊆ On) |
2 | | prmg 3697 |
. . . . . . 7
⊢ (𝑢 ∈ On → ∃𝑥 𝑥 ∈ {𝑢, 𝑣}) |
3 | 2 | adantr 274 |
. . . . . 6
⊢ ((𝑢 ∈ On ∧ 𝑣 ∈ On) → ∃𝑥 𝑥 ∈ {𝑢, 𝑣}) |
4 | | zfpair2 4188 |
. . . . . . 7
⊢ {𝑢, 𝑣} ∈ V |
5 | | sseq1 3165 |
. . . . . . . . 9
⊢ (𝑦 = {𝑢, 𝑣} → (𝑦 ⊆ On ↔ {𝑢, 𝑣} ⊆ On)) |
6 | | eleq2 2230 |
. . . . . . . . . 10
⊢ (𝑦 = {𝑢, 𝑣} → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ {𝑢, 𝑣})) |
7 | 6 | exbidv 1813 |
. . . . . . . . 9
⊢ (𝑦 = {𝑢, 𝑣} → (∃𝑥 𝑥 ∈ 𝑦 ↔ ∃𝑥 𝑥 ∈ {𝑢, 𝑣})) |
8 | 5, 7 | anbi12d 465 |
. . . . . . . 8
⊢ (𝑦 = {𝑢, 𝑣} → ((𝑦 ⊆ On ∧ ∃𝑥 𝑥 ∈ 𝑦) ↔ ({𝑢, 𝑣} ⊆ On ∧ ∃𝑥 𝑥 ∈ {𝑢, 𝑣}))) |
9 | | inteq 3827 |
. . . . . . . . 9
⊢ (𝑦 = {𝑢, 𝑣} → ∩ 𝑦 = ∩
{𝑢, 𝑣}) |
10 | | id 19 |
. . . . . . . . 9
⊢ (𝑦 = {𝑢, 𝑣} → 𝑦 = {𝑢, 𝑣}) |
11 | 9, 10 | eleq12d 2237 |
. . . . . . . 8
⊢ (𝑦 = {𝑢, 𝑣} → (∩ 𝑦 ∈ 𝑦 ↔ ∩ {𝑢, 𝑣} ∈ {𝑢, 𝑣})) |
12 | 8, 11 | imbi12d 233 |
. . . . . . 7
⊢ (𝑦 = {𝑢, 𝑣} → (((𝑦 ⊆ On ∧ ∃𝑥 𝑥 ∈ 𝑦) → ∩ 𝑦 ∈ 𝑦) ↔ (({𝑢, 𝑣} ⊆ On ∧ ∃𝑥 𝑥 ∈ {𝑢, 𝑣}) → ∩ {𝑢, 𝑣} ∈ {𝑢, 𝑣}))) |
13 | | onintexmid.onint |
. . . . . . 7
⊢ ((𝑦 ⊆ On ∧ ∃𝑥 𝑥 ∈ 𝑦) → ∩ 𝑦 ∈ 𝑦) |
14 | 4, 12, 13 | vtocl 2780 |
. . . . . 6
⊢ (({𝑢, 𝑣} ⊆ On ∧ ∃𝑥 𝑥 ∈ {𝑢, 𝑣}) → ∩ {𝑢, 𝑣} ∈ {𝑢, 𝑣}) |
15 | 1, 3, 14 | syl2anc 409 |
. . . . 5
⊢ ((𝑢 ∈ On ∧ 𝑣 ∈ On) → ∩ {𝑢,
𝑣} ∈ {𝑢, 𝑣}) |
16 | | elpri 3599 |
. . . . 5
⊢ (∩ {𝑢,
𝑣} ∈ {𝑢, 𝑣} → (∩ {𝑢, 𝑣} = 𝑢 ∨ ∩ {𝑢, 𝑣} = 𝑣)) |
17 | 15, 16 | syl 14 |
. . . 4
⊢ ((𝑢 ∈ On ∧ 𝑣 ∈ On) → (∩ {𝑢,
𝑣} = 𝑢 ∨ ∩ {𝑢, 𝑣} = 𝑣)) |
18 | | incom 3314 |
. . . . . . 7
⊢ (𝑣 ∩ 𝑢) = (𝑢 ∩ 𝑣) |
19 | 18 | eqeq1i 2173 |
. . . . . 6
⊢ ((𝑣 ∩ 𝑢) = 𝑢 ↔ (𝑢 ∩ 𝑣) = 𝑢) |
20 | | dfss1 3326 |
. . . . . 6
⊢ (𝑢 ⊆ 𝑣 ↔ (𝑣 ∩ 𝑢) = 𝑢) |
21 | | vex 2729 |
. . . . . . . 8
⊢ 𝑢 ∈ V |
22 | | vex 2729 |
. . . . . . . 8
⊢ 𝑣 ∈ V |
23 | 21, 22 | intpr 3856 |
. . . . . . 7
⊢ ∩ {𝑢,
𝑣} = (𝑢 ∩ 𝑣) |
24 | 23 | eqeq1i 2173 |
. . . . . 6
⊢ (∩ {𝑢,
𝑣} = 𝑢 ↔ (𝑢 ∩ 𝑣) = 𝑢) |
25 | 19, 20, 24 | 3bitr4ri 212 |
. . . . 5
⊢ (∩ {𝑢,
𝑣} = 𝑢 ↔ 𝑢 ⊆ 𝑣) |
26 | 23 | eqeq1i 2173 |
. . . . . 6
⊢ (∩ {𝑢,
𝑣} = 𝑣 ↔ (𝑢 ∩ 𝑣) = 𝑣) |
27 | | dfss1 3326 |
. . . . . 6
⊢ (𝑣 ⊆ 𝑢 ↔ (𝑢 ∩ 𝑣) = 𝑣) |
28 | 26, 27 | bitr4i 186 |
. . . . 5
⊢ (∩ {𝑢,
𝑣} = 𝑣 ↔ 𝑣 ⊆ 𝑢) |
29 | 25, 28 | orbi12i 754 |
. . . 4
⊢ ((∩ {𝑢,
𝑣} = 𝑢 ∨ ∩ {𝑢, 𝑣} = 𝑣) ↔ (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
30 | 17, 29 | sylib 121 |
. . 3
⊢ ((𝑢 ∈ On ∧ 𝑣 ∈ On) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
31 | 30 | rgen2a 2520 |
. 2
⊢
∀𝑢 ∈ On
∀𝑣 ∈ On (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢) |
32 | 31 | ordtri2or2exmid 4548 |
1
⊢ (𝜑 ∨ ¬ 𝜑) |