ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintexmid GIF version

Theorem onintexmid 4621
Description: If the intersection (infimum) of an inhabited class of ordinal numbers belongs to the class, excluded middle follows. The hypothesis would be provable given excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Aug-2021.)
Hypothesis
Ref Expression
onintexmid.onint ((𝑦 ⊆ On ∧ ∃𝑥 𝑥𝑦) → 𝑦𝑦)
Assertion
Ref Expression
onintexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem onintexmid
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prssi 3791 . . . . . 6 ((𝑢 ∈ On ∧ 𝑣 ∈ On) → {𝑢, 𝑣} ⊆ On)
2 prmg 3754 . . . . . . 7 (𝑢 ∈ On → ∃𝑥 𝑥 ∈ {𝑢, 𝑣})
32adantr 276 . . . . . 6 ((𝑢 ∈ On ∧ 𝑣 ∈ On) → ∃𝑥 𝑥 ∈ {𝑢, 𝑣})
4 zfpair2 4254 . . . . . . 7 {𝑢, 𝑣} ∈ V
5 sseq1 3216 . . . . . . . . 9 (𝑦 = {𝑢, 𝑣} → (𝑦 ⊆ On ↔ {𝑢, 𝑣} ⊆ On))
6 eleq2 2269 . . . . . . . . . 10 (𝑦 = {𝑢, 𝑣} → (𝑥𝑦𝑥 ∈ {𝑢, 𝑣}))
76exbidv 1848 . . . . . . . . 9 (𝑦 = {𝑢, 𝑣} → (∃𝑥 𝑥𝑦 ↔ ∃𝑥 𝑥 ∈ {𝑢, 𝑣}))
85, 7anbi12d 473 . . . . . . . 8 (𝑦 = {𝑢, 𝑣} → ((𝑦 ⊆ On ∧ ∃𝑥 𝑥𝑦) ↔ ({𝑢, 𝑣} ⊆ On ∧ ∃𝑥 𝑥 ∈ {𝑢, 𝑣})))
9 inteq 3888 . . . . . . . . 9 (𝑦 = {𝑢, 𝑣} → 𝑦 = {𝑢, 𝑣})
10 id 19 . . . . . . . . 9 (𝑦 = {𝑢, 𝑣} → 𝑦 = {𝑢, 𝑣})
119, 10eleq12d 2276 . . . . . . . 8 (𝑦 = {𝑢, 𝑣} → ( 𝑦𝑦 {𝑢, 𝑣} ∈ {𝑢, 𝑣}))
128, 11imbi12d 234 . . . . . . 7 (𝑦 = {𝑢, 𝑣} → (((𝑦 ⊆ On ∧ ∃𝑥 𝑥𝑦) → 𝑦𝑦) ↔ (({𝑢, 𝑣} ⊆ On ∧ ∃𝑥 𝑥 ∈ {𝑢, 𝑣}) → {𝑢, 𝑣} ∈ {𝑢, 𝑣})))
13 onintexmid.onint . . . . . . 7 ((𝑦 ⊆ On ∧ ∃𝑥 𝑥𝑦) → 𝑦𝑦)
144, 12, 13vtocl 2827 . . . . . 6 (({𝑢, 𝑣} ⊆ On ∧ ∃𝑥 𝑥 ∈ {𝑢, 𝑣}) → {𝑢, 𝑣} ∈ {𝑢, 𝑣})
151, 3, 14syl2anc 411 . . . . 5 ((𝑢 ∈ On ∧ 𝑣 ∈ On) → {𝑢, 𝑣} ∈ {𝑢, 𝑣})
16 elpri 3656 . . . . 5 ( {𝑢, 𝑣} ∈ {𝑢, 𝑣} → ( {𝑢, 𝑣} = 𝑢 {𝑢, 𝑣} = 𝑣))
1715, 16syl 14 . . . 4 ((𝑢 ∈ On ∧ 𝑣 ∈ On) → ( {𝑢, 𝑣} = 𝑢 {𝑢, 𝑣} = 𝑣))
18 incom 3365 . . . . . . 7 (𝑣𝑢) = (𝑢𝑣)
1918eqeq1i 2213 . . . . . 6 ((𝑣𝑢) = 𝑢 ↔ (𝑢𝑣) = 𝑢)
20 dfss1 3377 . . . . . 6 (𝑢𝑣 ↔ (𝑣𝑢) = 𝑢)
21 vex 2775 . . . . . . . 8 𝑢 ∈ V
22 vex 2775 . . . . . . . 8 𝑣 ∈ V
2321, 22intpr 3917 . . . . . . 7 {𝑢, 𝑣} = (𝑢𝑣)
2423eqeq1i 2213 . . . . . 6 ( {𝑢, 𝑣} = 𝑢 ↔ (𝑢𝑣) = 𝑢)
2519, 20, 243bitr4ri 213 . . . . 5 ( {𝑢, 𝑣} = 𝑢𝑢𝑣)
2623eqeq1i 2213 . . . . . 6 ( {𝑢, 𝑣} = 𝑣 ↔ (𝑢𝑣) = 𝑣)
27 dfss1 3377 . . . . . 6 (𝑣𝑢 ↔ (𝑢𝑣) = 𝑣)
2826, 27bitr4i 187 . . . . 5 ( {𝑢, 𝑣} = 𝑣𝑣𝑢)
2925, 28orbi12i 766 . . . 4 (( {𝑢, 𝑣} = 𝑢 {𝑢, 𝑣} = 𝑣) ↔ (𝑢𝑣𝑣𝑢))
3017, 29sylib 122 . . 3 ((𝑢 ∈ On ∧ 𝑣 ∈ On) → (𝑢𝑣𝑣𝑢))
3130rgen2a 2560 . 2 𝑢 ∈ On ∀𝑣 ∈ On (𝑢𝑣𝑣𝑢)
3231ordtri2or2exmid 4619 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710   = wceq 1373  wex 1515  wcel 2176  cin 3165  wss 3166  {cpr 3634   cint 3885  Oncon0 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-int 3886  df-tr 4143  df-iord 4413  df-on 4415  df-suc 4418
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator