ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintexmid GIF version

Theorem onintexmid 4639
Description: If the intersection (infimum) of an inhabited class of ordinal numbers belongs to the class, excluded middle follows. The hypothesis would be provable given excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Aug-2021.)
Hypothesis
Ref Expression
onintexmid.onint ((𝑦 ⊆ On ∧ ∃𝑥 𝑥𝑦) → 𝑦𝑦)
Assertion
Ref Expression
onintexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem onintexmid
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prssi 3802 . . . . . 6 ((𝑢 ∈ On ∧ 𝑣 ∈ On) → {𝑢, 𝑣} ⊆ On)
2 prmg 3765 . . . . . . 7 (𝑢 ∈ On → ∃𝑥 𝑥 ∈ {𝑢, 𝑣})
32adantr 276 . . . . . 6 ((𝑢 ∈ On ∧ 𝑣 ∈ On) → ∃𝑥 𝑥 ∈ {𝑢, 𝑣})
4 zfpair2 4270 . . . . . . 7 {𝑢, 𝑣} ∈ V
5 sseq1 3224 . . . . . . . . 9 (𝑦 = {𝑢, 𝑣} → (𝑦 ⊆ On ↔ {𝑢, 𝑣} ⊆ On))
6 eleq2 2271 . . . . . . . . . 10 (𝑦 = {𝑢, 𝑣} → (𝑥𝑦𝑥 ∈ {𝑢, 𝑣}))
76exbidv 1849 . . . . . . . . 9 (𝑦 = {𝑢, 𝑣} → (∃𝑥 𝑥𝑦 ↔ ∃𝑥 𝑥 ∈ {𝑢, 𝑣}))
85, 7anbi12d 473 . . . . . . . 8 (𝑦 = {𝑢, 𝑣} → ((𝑦 ⊆ On ∧ ∃𝑥 𝑥𝑦) ↔ ({𝑢, 𝑣} ⊆ On ∧ ∃𝑥 𝑥 ∈ {𝑢, 𝑣})))
9 inteq 3902 . . . . . . . . 9 (𝑦 = {𝑢, 𝑣} → 𝑦 = {𝑢, 𝑣})
10 id 19 . . . . . . . . 9 (𝑦 = {𝑢, 𝑣} → 𝑦 = {𝑢, 𝑣})
119, 10eleq12d 2278 . . . . . . . 8 (𝑦 = {𝑢, 𝑣} → ( 𝑦𝑦 {𝑢, 𝑣} ∈ {𝑢, 𝑣}))
128, 11imbi12d 234 . . . . . . 7 (𝑦 = {𝑢, 𝑣} → (((𝑦 ⊆ On ∧ ∃𝑥 𝑥𝑦) → 𝑦𝑦) ↔ (({𝑢, 𝑣} ⊆ On ∧ ∃𝑥 𝑥 ∈ {𝑢, 𝑣}) → {𝑢, 𝑣} ∈ {𝑢, 𝑣})))
13 onintexmid.onint . . . . . . 7 ((𝑦 ⊆ On ∧ ∃𝑥 𝑥𝑦) → 𝑦𝑦)
144, 12, 13vtocl 2832 . . . . . 6 (({𝑢, 𝑣} ⊆ On ∧ ∃𝑥 𝑥 ∈ {𝑢, 𝑣}) → {𝑢, 𝑣} ∈ {𝑢, 𝑣})
151, 3, 14syl2anc 411 . . . . 5 ((𝑢 ∈ On ∧ 𝑣 ∈ On) → {𝑢, 𝑣} ∈ {𝑢, 𝑣})
16 elpri 3666 . . . . 5 ( {𝑢, 𝑣} ∈ {𝑢, 𝑣} → ( {𝑢, 𝑣} = 𝑢 {𝑢, 𝑣} = 𝑣))
1715, 16syl 14 . . . 4 ((𝑢 ∈ On ∧ 𝑣 ∈ On) → ( {𝑢, 𝑣} = 𝑢 {𝑢, 𝑣} = 𝑣))
18 incom 3373 . . . . . . 7 (𝑣𝑢) = (𝑢𝑣)
1918eqeq1i 2215 . . . . . 6 ((𝑣𝑢) = 𝑢 ↔ (𝑢𝑣) = 𝑢)
20 dfss1 3385 . . . . . 6 (𝑢𝑣 ↔ (𝑣𝑢) = 𝑢)
21 vex 2779 . . . . . . . 8 𝑢 ∈ V
22 vex 2779 . . . . . . . 8 𝑣 ∈ V
2321, 22intpr 3931 . . . . . . 7 {𝑢, 𝑣} = (𝑢𝑣)
2423eqeq1i 2215 . . . . . 6 ( {𝑢, 𝑣} = 𝑢 ↔ (𝑢𝑣) = 𝑢)
2519, 20, 243bitr4ri 213 . . . . 5 ( {𝑢, 𝑣} = 𝑢𝑢𝑣)
2623eqeq1i 2215 . . . . . 6 ( {𝑢, 𝑣} = 𝑣 ↔ (𝑢𝑣) = 𝑣)
27 dfss1 3385 . . . . . 6 (𝑣𝑢 ↔ (𝑢𝑣) = 𝑣)
2826, 27bitr4i 187 . . . . 5 ( {𝑢, 𝑣} = 𝑣𝑣𝑢)
2925, 28orbi12i 766 . . . 4 (( {𝑢, 𝑣} = 𝑢 {𝑢, 𝑣} = 𝑣) ↔ (𝑢𝑣𝑣𝑢))
3017, 29sylib 122 . . 3 ((𝑢 ∈ On ∧ 𝑣 ∈ On) → (𝑢𝑣𝑣𝑢))
3130rgen2a 2562 . 2 𝑢 ∈ On ∀𝑣 ∈ On (𝑢𝑣𝑣𝑢)
3231ordtri2or2exmid 4637 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710   = wceq 1373  wex 1516  wcel 2178  cin 3173  wss 3174  {cpr 3644   cint 3899  Oncon0 4428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-tr 4159  df-iord 4431  df-on 4433  df-suc 4436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator