ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumss GIF version

Theorem isumss 11573
Description: Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.)
Hypotheses
Ref Expression
sumss.1 (𝜑𝐴𝐵)
sumss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
sumss.3 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
isumss.adc (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
isumss.m (𝜑𝑀 ∈ ℤ)
sumss.4 (𝜑𝐵 ⊆ (ℤ𝑀))
isumss.bdc (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
Assertion
Ref Expression
isumss (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘,𝑗   𝐵,𝑘,𝑗   𝐶,𝑗   𝑗,𝑀,𝑘   𝜑,𝑘,𝑗
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem isumss
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 isumss.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 sumss.1 . . . . 5 (𝜑𝐴𝐵)
4 sumss.4 . . . . 5 (𝜑𝐵 ⊆ (ℤ𝑀))
53, 4sstrd 3194 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑀))
6 simpr 110 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
7 simpr 110 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → 𝑚𝐴)
8 sumss.2 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
98ralrimiva 2570 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
109ad2antrr 488 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → ∀𝑘𝐴 𝐶 ∈ ℂ)
11 nfcsb1v 3117 . . . . . . . . . 10 𝑘𝑚 / 𝑘𝐶
1211nfel1 2350 . . . . . . . . 9 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
13 csbeq1a 3093 . . . . . . . . . 10 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
1413eleq1d 2265 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
1512, 14rspc 2862 . . . . . . . 8 (𝑚𝐴 → (∀𝑘𝐴 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
167, 10, 15sylc 62 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
17 0cnd 8036 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ ¬ 𝑚𝐴) → 0 ∈ ℂ)
18 eleq1w 2257 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑗𝐴𝑚𝐴))
1918dcbid 839 . . . . . . . 8 (𝑗 = 𝑚 → (DECID 𝑗𝐴DECID 𝑚𝐴))
20 isumss.adc . . . . . . . . 9 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
2120adantr 276 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
2219, 21, 6rspcdva 2873 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐴)
2316, 17, 22ifcldadc 3591 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
24 nfcv 2339 . . . . . . 7 𝑘𝑚
25 nfv 1542 . . . . . . . 8 𝑘 𝑚𝐴
26 nfcv 2339 . . . . . . . 8 𝑘0
2725, 11, 26nfif 3590 . . . . . . 7 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
28 eleq1w 2257 . . . . . . . 8 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
2928, 13ifbieq1d 3584 . . . . . . 7 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐶, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
30 eqid 2196 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)) = (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))
3124, 27, 29, 30fvmptf 5657 . . . . . 6 ((𝑚 ∈ (ℤ𝑀) ∧ if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
326, 23, 31syl2anc 411 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
33 eqid 2196 . . . . . . . 8 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
3433fvmpts 5642 . . . . . . 7 ((𝑚𝐴𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
357, 16, 34syl2anc 411 . . . . . 6 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
3635, 22ifeq1dadc 3592 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
3732, 36eqtr4d 2232 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0))
388fmpttd 5720 . . . . 5 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
3938ffvelcdmda 5700 . . . 4 ((𝜑𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
401, 2, 5, 37, 20, 39zsumdc 11566 . . 3 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)))))
41 dfss1 3368 . . . . . . . . . 10 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
423, 41sylib 122 . . . . . . . . 9 (𝜑 → (𝐵𝐴) = 𝐴)
4342eleq2d 2266 . . . . . . . 8 (𝜑 → (𝑚 ∈ (𝐵𝐴) ↔ 𝑚𝐴))
44 elin 3347 . . . . . . . 8 (𝑚 ∈ (𝐵𝐴) ↔ (𝑚𝐵𝑚𝐴))
4543, 44bitr3di 195 . . . . . . 7 (𝜑 → (𝑚𝐴 ↔ (𝑚𝐵𝑚𝐴)))
4645adantr 276 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝑚𝐴 ↔ (𝑚𝐵𝑚𝐴)))
4746ifbid 3583 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0))
48 simplr 528 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → 𝑚𝐵)
4916adantlr 477 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
50 eqid 2196 . . . . . . . . . . 11 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
5150fvmpts 5642 . . . . . . . . . 10 ((𝑚𝐵𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
5248, 49, 51syl2anc 411 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
53 simpr 110 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → 𝑚𝐴)
5453iftrued 3569 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
5552, 54eqtr4d 2232 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
56 simplr 528 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚𝐵)
57 simpr 110 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ¬ 𝑚𝐴)
5856, 57eldifd 3167 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚 ∈ (𝐵𝐴))
59 sumss.3 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
6059ralrimiva 2570 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 0)
6160ad3antrrr 492 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 0)
6211nfeq1 2349 . . . . . . . . . . 11 𝑘𝑚 / 𝑘𝐶 = 0
6313eqeq1d 2205 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝐶 = 0 ↔ 𝑚 / 𝑘𝐶 = 0))
6462, 63rspc 2862 . . . . . . . . . 10 (𝑚 ∈ (𝐵𝐴) → (∀𝑘 ∈ (𝐵𝐴)𝐶 = 0 → 𝑚 / 𝑘𝐶 = 0))
6558, 61, 64sylc 62 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚 / 𝑘𝐶 = 0)
66 0cnd 8036 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 0 ∈ ℂ)
6765, 66eqeltrd 2273 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
6856, 67, 51syl2anc 411 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
6957iffalsed 3572 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
7065, 68, 693eqtr4d 2239 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
7122adantr 276 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) → DECID 𝑚𝐴)
72 exmiddc 837 . . . . . . . . 9 (DECID 𝑚𝐴 → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
7371, 72syl 14 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
7455, 70, 73mpjaodan 799 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
75 eleq1w 2257 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑗𝐵𝑚𝐵))
7675dcbid 839 . . . . . . . 8 (𝑗 = 𝑚 → (DECID 𝑗𝐵DECID 𝑚𝐵))
77 isumss.bdc . . . . . . . . 9 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
7877adantr 276 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
7976, 78, 6rspcdva 2873 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐵)
8074, 79ifeq1dadc 3592 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0) = if(𝑚𝐵, if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0), 0))
81 ifandc 3600 . . . . . . 7 (DECID 𝑚𝐵 → if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0) = if(𝑚𝐵, if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0), 0))
8279, 81syl 14 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0) = if(𝑚𝐵, if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0), 0))
8380, 82eqtr4d 2232 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0) = if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0))
8447, 32, 833eqtr4d 2239 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0))
858adantlr 477 . . . . . . 7 (((𝜑𝑘𝐵) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
86 simpll 527 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝜑)
87 simplr 528 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝑘𝐵)
88 simpr 110 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → ¬ 𝑘𝐴)
8987, 88eldifd 3167 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝑘 ∈ (𝐵𝐴))
9086, 89, 59syl2anc 411 . . . . . . . 8 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝐶 = 0)
91 0cnd 8036 . . . . . . . 8 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 0 ∈ ℂ)
9290, 91eqeltrd 2273 . . . . . . 7 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝐶 ∈ ℂ)
93 eleq1w 2257 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
9493dcbid 839 . . . . . . . . 9 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
9520adantr 276 . . . . . . . . 9 ((𝜑𝑘𝐵) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
964sselda 3184 . . . . . . . . 9 ((𝜑𝑘𝐵) → 𝑘 ∈ (ℤ𝑀))
9794, 95, 96rspcdva 2873 . . . . . . . 8 ((𝜑𝑘𝐵) → DECID 𝑘𝐴)
98 exmiddc 837 . . . . . . . 8 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
9997, 98syl 14 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
10085, 92, 99mpjaodan 799 . . . . . 6 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
101100fmpttd 5720 . . . . 5 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
102101ffvelcdmda 5700 . . . 4 ((𝜑𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
1031, 2, 4, 84, 77, 102zsumdc 11566 . . 3 (𝜑 → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)))))
10440, 103eqtr4d 2232 . 2 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
105 sumfct 11556 . . 3 (∀𝑘𝐴 𝐶 ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
1069, 105syl 14 . 2 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
107100ralrimiva 2570 . . 3 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
108 sumfct 11556 . . 3 (∀𝑘𝐵 𝐶 ∈ ℂ → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶)
109107, 108syl 14 . 2 (𝜑 → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶)
110104, 106, 1093eqtr3d 2237 1 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  csb 3084  cdif 3154  cin 3156  wss 3157  ifcif 3562  cmpt 4095  cfv 5259  cc 7894  0cc0 7896   + caddc 7899  cz 9343  cuz 9618  seqcseq 10556  cli 11460  Σcsu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by:  fisumss  11574  isumss2  11575  binomlem  11665
  Copyright terms: Public domain W3C validator