Step | Hyp | Ref
| Expression |
1 | | eqid 2170 |
. . . 4
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
2 | | isumss.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | | sumss.1 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
4 | | sumss.4 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ (ℤ≥‘𝑀)) |
5 | 3, 4 | sstrd 3157 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
6 | | simpr 109 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → 𝑚 ∈ (ℤ≥‘𝑀)) |
7 | | simpr 109 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ 𝐴) |
8 | | sumss.2 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
9 | 8 | ralrimiva 2543 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) |
10 | 9 | ad2antrr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐴) → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) |
11 | | nfcsb1v 3082 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 |
12 | 11 | nfel1 2323 |
. . . . . . . . 9
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ |
13 | | csbeq1a 3058 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → 𝐶 = ⦋𝑚 / 𝑘⦌𝐶) |
14 | 13 | eleq1d 2239 |
. . . . . . . . 9
⊢ (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ)) |
15 | 12, 14 | rspc 2828 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ)) |
16 | 7, 10, 15 | sylc 62 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
17 | | 0cnd 7913 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑚 ∈ 𝐴) → 0 ∈ ℂ) |
18 | | eleq1w 2231 |
. . . . . . . . 9
⊢ (𝑗 = 𝑚 → (𝑗 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴)) |
19 | 18 | dcbid 833 |
. . . . . . . 8
⊢ (𝑗 = 𝑚 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑚 ∈ 𝐴)) |
20 | | isumss.adc |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) |
21 | 20 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) |
22 | 19, 21, 6 | rspcdva 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → DECID
𝑚 ∈ 𝐴) |
23 | 16, 17, 22 | ifcldadc 3555 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) ∈ ℂ) |
24 | | nfcv 2312 |
. . . . . . 7
⊢
Ⅎ𝑘𝑚 |
25 | | nfv 1521 |
. . . . . . . 8
⊢
Ⅎ𝑘 𝑚 ∈ 𝐴 |
26 | | nfcv 2312 |
. . . . . . . 8
⊢
Ⅎ𝑘0 |
27 | 25, 11, 26 | nfif 3554 |
. . . . . . 7
⊢
Ⅎ𝑘if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) |
28 | | eleq1w 2231 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → (𝑘 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴)) |
29 | 28, 13 | ifbieq1d 3548 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → if(𝑘 ∈ 𝐴, 𝐶, 0) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
30 | | eqid 2170 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0)) = (𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0)) |
31 | 24, 27, 29, 30 | fvmptf 5588 |
. . . . . 6
⊢ ((𝑚 ∈
(ℤ≥‘𝑀) ∧ if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) ∈ ℂ) → ((𝑘 ∈
(ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
32 | 6, 23, 31 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
33 | | eqid 2170 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶) |
34 | 33 | fvmpts 5574 |
. . . . . . 7
⊢ ((𝑚 ∈ 𝐴 ∧ ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ⦋𝑚 / 𝑘⦌𝐶) |
35 | 7, 16, 34 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ⦋𝑚 / 𝑘⦌𝐶) |
36 | 35, 22 | ifeq1dadc 3556 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 0) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
37 | 32, 36 | eqtr4d 2206 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 0)) |
38 | 8 | fmpttd 5651 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ) |
39 | 38 | ffvelrnda 5631 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) ∈ ℂ) |
40 | 1, 2, 5, 37, 20, 39 | zsumdc 11347 |
. . 3
⊢ (𝜑 → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))))) |
41 | | dfss1 3331 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) |
42 | 3, 41 | sylib 121 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ∩ 𝐴) = 𝐴) |
43 | 42 | eleq2d 2240 |
. . . . . . . 8
⊢ (𝜑 → (𝑚 ∈ (𝐵 ∩ 𝐴) ↔ 𝑚 ∈ 𝐴)) |
44 | | elin 3310 |
. . . . . . . 8
⊢ (𝑚 ∈ (𝐵 ∩ 𝐴) ↔ (𝑚 ∈ 𝐵 ∧ 𝑚 ∈ 𝐴)) |
45 | 43, 44 | bitr3di 194 |
. . . . . . 7
⊢ (𝜑 → (𝑚 ∈ 𝐴 ↔ (𝑚 ∈ 𝐵 ∧ 𝑚 ∈ 𝐴))) |
46 | 45 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → (𝑚 ∈ 𝐴 ↔ (𝑚 ∈ 𝐵 ∧ 𝑚 ∈ 𝐴))) |
47 | 46 | ifbid 3547 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = if((𝑚 ∈ 𝐵 ∧ 𝑚 ∈ 𝐴), ⦋𝑚 / 𝑘⦌𝐶, 0)) |
48 | | simplr 525 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ 𝐵) |
49 | 16 | adantlr 474 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ 𝑚 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
50 | | eqid 2170 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐵 ↦ 𝐶) = (𝑘 ∈ 𝐵 ↦ 𝐶) |
51 | 50 | fvmpts 5574 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ 𝐵 ∧ ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ⦋𝑚 / 𝑘⦌𝐶) |
52 | 48, 49, 51 | syl2anc 409 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ⦋𝑚 / 𝑘⦌𝐶) |
53 | | simpr 109 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ 𝐴) |
54 | 53 | iftrued 3533 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = ⦋𝑚 / 𝑘⦌𝐶) |
55 | 52, 54 | eqtr4d 2206 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
56 | | simplr 525 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → 𝑚 ∈ 𝐵) |
57 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → ¬ 𝑚 ∈ 𝐴) |
58 | 56, 57 | eldifd 3131 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → 𝑚 ∈ (𝐵 ∖ 𝐴)) |
59 | | sumss.3 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) |
60 | 59 | ralrimiva 2543 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ (𝐵 ∖ 𝐴)𝐶 = 0) |
61 | 60 | ad3antrrr 489 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → ∀𝑘 ∈ (𝐵 ∖ 𝐴)𝐶 = 0) |
62 | 11 | nfeq1 2322 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 = 0 |
63 | 13 | eqeq1d 2179 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (𝐶 = 0 ↔ ⦋𝑚 / 𝑘⦌𝐶 = 0)) |
64 | 62, 63 | rspc 2828 |
. . . . . . . . . 10
⊢ (𝑚 ∈ (𝐵 ∖ 𝐴) → (∀𝑘 ∈ (𝐵 ∖ 𝐴)𝐶 = 0 → ⦋𝑚 / 𝑘⦌𝐶 = 0)) |
65 | 58, 61, 64 | sylc 62 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐶 = 0) |
66 | | 0cnd 7913 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → 0 ∈ ℂ) |
67 | 65, 66 | eqeltrd 2247 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
68 | 56, 67, 51 | syl2anc 409 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ⦋𝑚 / 𝑘⦌𝐶) |
69 | 57 | iffalsed 3536 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = 0) |
70 | 65, 68, 69 | 3eqtr4d 2213 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
71 | 22 | adantr 274 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) → DECID 𝑚 ∈ 𝐴) |
72 | | exmiddc 831 |
. . . . . . . . 9
⊢
(DECID 𝑚 ∈ 𝐴 → (𝑚 ∈ 𝐴 ∨ ¬ 𝑚 ∈ 𝐴)) |
73 | 71, 72 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) → (𝑚 ∈ 𝐴 ∨ ¬ 𝑚 ∈ 𝐴)) |
74 | 55, 70, 73 | mpjaodan 793 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
75 | | eleq1w 2231 |
. . . . . . . . 9
⊢ (𝑗 = 𝑚 → (𝑗 ∈ 𝐵 ↔ 𝑚 ∈ 𝐵)) |
76 | 75 | dcbid 833 |
. . . . . . . 8
⊢ (𝑗 = 𝑚 → (DECID 𝑗 ∈ 𝐵 ↔ DECID 𝑚 ∈ 𝐵)) |
77 | | isumss.bdc |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) |
78 | 77 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) |
79 | 76, 78, 6 | rspcdva 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → DECID
𝑚 ∈ 𝐵) |
80 | 74, 79 | ifeq1dadc 3556 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 0) = if(𝑚 ∈ 𝐵, if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0), 0)) |
81 | | ifandc 3563 |
. . . . . . 7
⊢
(DECID 𝑚 ∈ 𝐵 → if((𝑚 ∈ 𝐵 ∧ 𝑚 ∈ 𝐴), ⦋𝑚 / 𝑘⦌𝐶, 0) = if(𝑚 ∈ 𝐵, if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0), 0)) |
82 | 79, 81 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → if((𝑚 ∈ 𝐵 ∧ 𝑚 ∈ 𝐴), ⦋𝑚 / 𝑘⦌𝐶, 0) = if(𝑚 ∈ 𝐵, if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0), 0)) |
83 | 80, 82 | eqtr4d 2206 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 0) = if((𝑚 ∈ 𝐵 ∧ 𝑚 ∈ 𝐴), ⦋𝑚 / 𝑘⦌𝐶, 0)) |
84 | 47, 32, 83 | 3eqtr4d 2213 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 0)) |
85 | 8 | adantlr 474 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
86 | | simpll 524 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → 𝜑) |
87 | | simplr 525 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐵) |
88 | | simpr 109 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → ¬ 𝑘 ∈ 𝐴) |
89 | 87, 88 | eldifd 3131 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → 𝑘 ∈ (𝐵 ∖ 𝐴)) |
90 | 86, 89, 59 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → 𝐶 = 0) |
91 | | 0cnd 7913 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → 0 ∈ ℂ) |
92 | 90, 91 | eqeltrd 2247 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
93 | | eleq1w 2231 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
94 | 93 | dcbid 833 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑘 ∈ 𝐴)) |
95 | 20 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) |
96 | 4 | sselda 3147 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑘 ∈ (ℤ≥‘𝑀)) |
97 | 94, 95, 96 | rspcdva 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → DECID 𝑘 ∈ 𝐴) |
98 | | exmiddc 831 |
. . . . . . . 8
⊢
(DECID 𝑘 ∈ 𝐴 → (𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴)) |
99 | 97, 98 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴)) |
100 | 85, 92, 99 | mpjaodan 793 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
101 | 100 | fmpttd 5651 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ 𝐶):𝐵⟶ℂ) |
102 | 101 | ffvelrnda 5631 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) ∈ ℂ) |
103 | 1, 2, 4, 84, 77, 102 | zsumdc 11347 |
. . 3
⊢ (𝜑 → Σ𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))))) |
104 | 40, 103 | eqtr4d 2206 |
. 2
⊢ (𝜑 → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
105 | | sumfct 11337 |
. . 3
⊢
(∀𝑘 ∈
𝐴 𝐶 ∈ ℂ → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐶) |
106 | 9, 105 | syl 14 |
. 2
⊢ (𝜑 → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐶) |
107 | 100 | ralrimiva 2543 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
108 | | sumfct 11337 |
. . 3
⊢
(∀𝑘 ∈
𝐵 𝐶 ∈ ℂ → Σ𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐵 𝐶) |
109 | 107, 108 | syl 14 |
. 2
⊢ (𝜑 → Σ𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐵 𝐶) |
110 | 104, 106,
109 | 3eqtr3d 2211 |
1
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |