Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumss GIF version

Theorem isumss 10999
 Description: Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.)
Hypotheses
Ref Expression
sumss.1 (𝜑𝐴𝐵)
sumss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
sumss.3 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
isumss.adc (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
isumss.m (𝜑𝑀 ∈ ℤ)
sumss.4 (𝜑𝐵 ⊆ (ℤ𝑀))
isumss.bdc (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
Assertion
Ref Expression
isumss (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘,𝑗   𝐵,𝑘,𝑗   𝐶,𝑗   𝑗,𝑀,𝑘   𝜑,𝑘,𝑗
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem isumss
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2100 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 isumss.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 sumss.1 . . . . 5 (𝜑𝐴𝐵)
4 sumss.4 . . . . 5 (𝜑𝐵 ⊆ (ℤ𝑀))
53, 4sstrd 3057 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑀))
6 simpr 109 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
7 simpr 109 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → 𝑚𝐴)
8 sumss.2 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
98ralrimiva 2464 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
109ad2antrr 475 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → ∀𝑘𝐴 𝐶 ∈ ℂ)
11 nfcsb1v 2985 . . . . . . . . . 10 𝑘𝑚 / 𝑘𝐶
1211nfel1 2251 . . . . . . . . 9 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
13 csbeq1a 2963 . . . . . . . . . 10 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
1413eleq1d 2168 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
1512, 14rspc 2738 . . . . . . . 8 (𝑚𝐴 → (∀𝑘𝐴 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
167, 10, 15sylc 62 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
17 0cnd 7631 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ ¬ 𝑚𝐴) → 0 ∈ ℂ)
18 eleq1w 2160 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑗𝐴𝑚𝐴))
1918dcbid 792 . . . . . . . 8 (𝑗 = 𝑚 → (DECID 𝑗𝐴DECID 𝑚𝐴))
20 isumss.adc . . . . . . . . 9 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
2120adantr 272 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
2219, 21, 6rspcdva 2749 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐴)
2316, 17, 22ifcldadc 3448 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
24 nfcv 2240 . . . . . . 7 𝑘𝑚
25 nfv 1476 . . . . . . . 8 𝑘 𝑚𝐴
26 nfcv 2240 . . . . . . . 8 𝑘0
2725, 11, 26nfif 3447 . . . . . . 7 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
28 eleq1w 2160 . . . . . . . 8 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
2928, 13ifbieq1d 3441 . . . . . . 7 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐶, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
30 eqid 2100 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)) = (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))
3124, 27, 29, 30fvmptf 5445 . . . . . 6 ((𝑚 ∈ (ℤ𝑀) ∧ if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
326, 23, 31syl2anc 406 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
33 eqid 2100 . . . . . . . 8 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
3433fvmpts 5431 . . . . . . 7 ((𝑚𝐴𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
357, 16, 34syl2anc 406 . . . . . 6 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
3635, 22ifeq1dadc 3449 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
3732, 36eqtr4d 2135 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0))
388fmpttd 5507 . . . . 5 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
3938ffvelrnda 5487 . . . 4 ((𝜑𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
401, 2, 5, 37, 20, 39zsumdc 10992 . . 3 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)))))
41 elin 3206 . . . . . . . 8 (𝑚 ∈ (𝐵𝐴) ↔ (𝑚𝐵𝑚𝐴))
42 dfss1 3227 . . . . . . . . . 10 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
433, 42sylib 121 . . . . . . . . 9 (𝜑 → (𝐵𝐴) = 𝐴)
4443eleq2d 2169 . . . . . . . 8 (𝜑 → (𝑚 ∈ (𝐵𝐴) ↔ 𝑚𝐴))
4541, 44syl5rbbr 194 . . . . . . 7 (𝜑 → (𝑚𝐴 ↔ (𝑚𝐵𝑚𝐴)))
4645adantr 272 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝑚𝐴 ↔ (𝑚𝐵𝑚𝐴)))
4746ifbid 3440 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0))
48 simplr 500 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → 𝑚𝐵)
4916adantlr 464 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
50 eqid 2100 . . . . . . . . . . 11 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
5150fvmpts 5431 . . . . . . . . . 10 ((𝑚𝐵𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
5248, 49, 51syl2anc 406 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
53 simpr 109 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → 𝑚𝐴)
5453iftrued 3428 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
5552, 54eqtr4d 2135 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
56 simplr 500 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚𝐵)
57 simpr 109 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ¬ 𝑚𝐴)
5856, 57eldifd 3031 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚 ∈ (𝐵𝐴))
59 sumss.3 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
6059ralrimiva 2464 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 0)
6160ad3antrrr 479 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 0)
6211nfeq1 2250 . . . . . . . . . . 11 𝑘𝑚 / 𝑘𝐶 = 0
6313eqeq1d 2108 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝐶 = 0 ↔ 𝑚 / 𝑘𝐶 = 0))
6462, 63rspc 2738 . . . . . . . . . 10 (𝑚 ∈ (𝐵𝐴) → (∀𝑘 ∈ (𝐵𝐴)𝐶 = 0 → 𝑚 / 𝑘𝐶 = 0))
6558, 61, 64sylc 62 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚 / 𝑘𝐶 = 0)
66 0cnd 7631 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 0 ∈ ℂ)
6765, 66eqeltrd 2176 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
6856, 67, 51syl2anc 406 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
6957iffalsed 3431 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
7065, 68, 693eqtr4d 2142 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
7122adantr 272 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) → DECID 𝑚𝐴)
72 exmiddc 788 . . . . . . . . 9 (DECID 𝑚𝐴 → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
7371, 72syl 14 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
7455, 70, 73mpjaodan 753 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
75 eleq1w 2160 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑗𝐵𝑚𝐵))
7675dcbid 792 . . . . . . . 8 (𝑗 = 𝑚 → (DECID 𝑗𝐵DECID 𝑚𝐵))
77 isumss.bdc . . . . . . . . 9 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
7877adantr 272 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
7976, 78, 6rspcdva 2749 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐵)
8074, 79ifeq1dadc 3449 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0) = if(𝑚𝐵, if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0), 0))
81 ifandc 3455 . . . . . . 7 (DECID 𝑚𝐵 → if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0) = if(𝑚𝐵, if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0), 0))
8279, 81syl 14 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0) = if(𝑚𝐵, if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0), 0))
8380, 82eqtr4d 2135 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0) = if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0))
8447, 32, 833eqtr4d 2142 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0))
858adantlr 464 . . . . . . 7 (((𝜑𝑘𝐵) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
86 simpll 499 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝜑)
87 simplr 500 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝑘𝐵)
88 simpr 109 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → ¬ 𝑘𝐴)
8987, 88eldifd 3031 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝑘 ∈ (𝐵𝐴))
9086, 89, 59syl2anc 406 . . . . . . . 8 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝐶 = 0)
91 0cnd 7631 . . . . . . . 8 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 0 ∈ ℂ)
9290, 91eqeltrd 2176 . . . . . . 7 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝐶 ∈ ℂ)
93 eleq1w 2160 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
9493dcbid 792 . . . . . . . . 9 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
9520adantr 272 . . . . . . . . 9 ((𝜑𝑘𝐵) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
964sselda 3047 . . . . . . . . 9 ((𝜑𝑘𝐵) → 𝑘 ∈ (ℤ𝑀))
9794, 95, 96rspcdva 2749 . . . . . . . 8 ((𝜑𝑘𝐵) → DECID 𝑘𝐴)
98 exmiddc 788 . . . . . . . 8 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
9997, 98syl 14 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
10085, 92, 99mpjaodan 753 . . . . . 6 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
101100fmpttd 5507 . . . . 5 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
102101ffvelrnda 5487 . . . 4 ((𝜑𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
1031, 2, 4, 84, 77, 102zsumdc 10992 . . 3 (𝜑 → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)))))
10440, 103eqtr4d 2135 . 2 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
105 sumfct 10982 . . 3 (∀𝑘𝐴 𝐶 ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
1069, 105syl 14 . 2 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
107100ralrimiva 2464 . . 3 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
108 sumfct 10982 . . 3 (∀𝑘𝐵 𝐶 ∈ ℂ → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶)
109107, 108syl 14 . 2 (𝜑 → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶)
110104, 106, 1093eqtr3d 2140 1 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 670  DECID wdc 786   = wceq 1299   ∈ wcel 1448  ∀wral 2375  ⦋csb 2955   ∖ cdif 3018   ∩ cin 3020   ⊆ wss 3021  ifcif 3421   ↦ cmpt 3929  ‘cfv 5059  ℂcc 7498  0cc0 7500   + caddc 7503  ℤcz 8906  ℤ≥cuz 9176  seqcseq 10059   ⇝ cli 10886  Σcsu 10961 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613 This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-isom 5068  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-frec 6218  df-1o 6243  df-oadd 6247  df-er 6359  df-en 6565  df-dom 6566  df-fin 6567  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-n0 8830  df-z 8907  df-uz 9177  df-q 9262  df-rp 9292  df-fz 9632  df-fzo 9761  df-seqfrec 10060  df-exp 10134  df-ihash 10363  df-cj 10455  df-rsqrt 10610  df-abs 10611  df-clim 10887  df-sumdc 10962 This theorem is referenced by:  fisumss  11000  isumss2  11001  binomlem  11091
 Copyright terms: Public domain W3C validator