ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumss GIF version

Theorem isumss 11192
Description: Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.)
Hypotheses
Ref Expression
sumss.1 (𝜑𝐴𝐵)
sumss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
sumss.3 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
isumss.adc (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
isumss.m (𝜑𝑀 ∈ ℤ)
sumss.4 (𝜑𝐵 ⊆ (ℤ𝑀))
isumss.bdc (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
Assertion
Ref Expression
isumss (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘,𝑗   𝐵,𝑘,𝑗   𝐶,𝑗   𝑗,𝑀,𝑘   𝜑,𝑘,𝑗
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem isumss
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2140 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 isumss.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 sumss.1 . . . . 5 (𝜑𝐴𝐵)
4 sumss.4 . . . . 5 (𝜑𝐵 ⊆ (ℤ𝑀))
53, 4sstrd 3112 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑀))
6 simpr 109 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
7 simpr 109 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → 𝑚𝐴)
8 sumss.2 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
98ralrimiva 2508 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
109ad2antrr 480 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → ∀𝑘𝐴 𝐶 ∈ ℂ)
11 nfcsb1v 3040 . . . . . . . . . 10 𝑘𝑚 / 𝑘𝐶
1211nfel1 2293 . . . . . . . . 9 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
13 csbeq1a 3016 . . . . . . . . . 10 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
1413eleq1d 2209 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
1512, 14rspc 2787 . . . . . . . 8 (𝑚𝐴 → (∀𝑘𝐴 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
167, 10, 15sylc 62 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
17 0cnd 7783 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ ¬ 𝑚𝐴) → 0 ∈ ℂ)
18 eleq1w 2201 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑗𝐴𝑚𝐴))
1918dcbid 824 . . . . . . . 8 (𝑗 = 𝑚 → (DECID 𝑗𝐴DECID 𝑚𝐴))
20 isumss.adc . . . . . . . . 9 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
2120adantr 274 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
2219, 21, 6rspcdva 2798 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐴)
2316, 17, 22ifcldadc 3506 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
24 nfcv 2282 . . . . . . 7 𝑘𝑚
25 nfv 1509 . . . . . . . 8 𝑘 𝑚𝐴
26 nfcv 2282 . . . . . . . 8 𝑘0
2725, 11, 26nfif 3505 . . . . . . 7 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
28 eleq1w 2201 . . . . . . . 8 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
2928, 13ifbieq1d 3499 . . . . . . 7 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐶, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
30 eqid 2140 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)) = (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))
3124, 27, 29, 30fvmptf 5521 . . . . . 6 ((𝑚 ∈ (ℤ𝑀) ∧ if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
326, 23, 31syl2anc 409 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
33 eqid 2140 . . . . . . . 8 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
3433fvmpts 5507 . . . . . . 7 ((𝑚𝐴𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
357, 16, 34syl2anc 409 . . . . . 6 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
3635, 22ifeq1dadc 3507 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
3732, 36eqtr4d 2176 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0))
388fmpttd 5583 . . . . 5 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
3938ffvelrnda 5563 . . . 4 ((𝜑𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
401, 2, 5, 37, 20, 39zsumdc 11185 . . 3 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)))))
41 dfss1 3285 . . . . . . . . . 10 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
423, 41sylib 121 . . . . . . . . 9 (𝜑 → (𝐵𝐴) = 𝐴)
4342eleq2d 2210 . . . . . . . 8 (𝜑 → (𝑚 ∈ (𝐵𝐴) ↔ 𝑚𝐴))
44 elin 3264 . . . . . . . 8 (𝑚 ∈ (𝐵𝐴) ↔ (𝑚𝐵𝑚𝐴))
4543, 44bitr3di 194 . . . . . . 7 (𝜑 → (𝑚𝐴 ↔ (𝑚𝐵𝑚𝐴)))
4645adantr 274 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝑚𝐴 ↔ (𝑚𝐵𝑚𝐴)))
4746ifbid 3498 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0))
48 simplr 520 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → 𝑚𝐵)
4916adantlr 469 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
50 eqid 2140 . . . . . . . . . . 11 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
5150fvmpts 5507 . . . . . . . . . 10 ((𝑚𝐵𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
5248, 49, 51syl2anc 409 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
53 simpr 109 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → 𝑚𝐴)
5453iftrued 3486 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
5552, 54eqtr4d 2176 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
56 simplr 520 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚𝐵)
57 simpr 109 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ¬ 𝑚𝐴)
5856, 57eldifd 3086 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚 ∈ (𝐵𝐴))
59 sumss.3 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
6059ralrimiva 2508 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 0)
6160ad3antrrr 484 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 0)
6211nfeq1 2292 . . . . . . . . . . 11 𝑘𝑚 / 𝑘𝐶 = 0
6313eqeq1d 2149 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝐶 = 0 ↔ 𝑚 / 𝑘𝐶 = 0))
6462, 63rspc 2787 . . . . . . . . . 10 (𝑚 ∈ (𝐵𝐴) → (∀𝑘 ∈ (𝐵𝐴)𝐶 = 0 → 𝑚 / 𝑘𝐶 = 0))
6558, 61, 64sylc 62 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚 / 𝑘𝐶 = 0)
66 0cnd 7783 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 0 ∈ ℂ)
6765, 66eqeltrd 2217 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
6856, 67, 51syl2anc 409 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
6957iffalsed 3489 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
7065, 68, 693eqtr4d 2183 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
7122adantr 274 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) → DECID 𝑚𝐴)
72 exmiddc 822 . . . . . . . . 9 (DECID 𝑚𝐴 → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
7371, 72syl 14 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
7455, 70, 73mpjaodan 788 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
75 eleq1w 2201 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑗𝐵𝑚𝐵))
7675dcbid 824 . . . . . . . 8 (𝑗 = 𝑚 → (DECID 𝑗𝐵DECID 𝑚𝐵))
77 isumss.bdc . . . . . . . . 9 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
7877adantr 274 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
7976, 78, 6rspcdva 2798 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐵)
8074, 79ifeq1dadc 3507 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0) = if(𝑚𝐵, if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0), 0))
81 ifandc 3513 . . . . . . 7 (DECID 𝑚𝐵 → if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0) = if(𝑚𝐵, if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0), 0))
8279, 81syl 14 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0) = if(𝑚𝐵, if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0), 0))
8380, 82eqtr4d 2176 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0) = if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0))
8447, 32, 833eqtr4d 2183 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0))
858adantlr 469 . . . . . . 7 (((𝜑𝑘𝐵) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
86 simpll 519 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝜑)
87 simplr 520 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝑘𝐵)
88 simpr 109 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → ¬ 𝑘𝐴)
8987, 88eldifd 3086 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝑘 ∈ (𝐵𝐴))
9086, 89, 59syl2anc 409 . . . . . . . 8 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝐶 = 0)
91 0cnd 7783 . . . . . . . 8 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 0 ∈ ℂ)
9290, 91eqeltrd 2217 . . . . . . 7 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝐶 ∈ ℂ)
93 eleq1w 2201 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
9493dcbid 824 . . . . . . . . 9 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
9520adantr 274 . . . . . . . . 9 ((𝜑𝑘𝐵) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
964sselda 3102 . . . . . . . . 9 ((𝜑𝑘𝐵) → 𝑘 ∈ (ℤ𝑀))
9794, 95, 96rspcdva 2798 . . . . . . . 8 ((𝜑𝑘𝐵) → DECID 𝑘𝐴)
98 exmiddc 822 . . . . . . . 8 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
9997, 98syl 14 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
10085, 92, 99mpjaodan 788 . . . . . 6 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
101100fmpttd 5583 . . . . 5 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
102101ffvelrnda 5563 . . . 4 ((𝜑𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
1031, 2, 4, 84, 77, 102zsumdc 11185 . . 3 (𝜑 → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)))))
10440, 103eqtr4d 2176 . 2 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
105 sumfct 11175 . . 3 (∀𝑘𝐴 𝐶 ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
1069, 105syl 14 . 2 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
107100ralrimiva 2508 . . 3 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
108 sumfct 11175 . . 3 (∀𝑘𝐵 𝐶 ∈ ℂ → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶)
109107, 108syl 14 . 2 (𝜑 → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶)
110104, 106, 1093eqtr3d 2181 1 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820   = wceq 1332  wcel 1481  wral 2417  csb 3007  cdif 3073  cin 3075  wss 3076  ifcif 3479  cmpt 3997  cfv 5131  cc 7642  0cc0 7644   + caddc 7647  cz 9078  cuz 9350  seqcseq 10249  cli 11079  Σcsu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  fisumss  11193  isumss2  11194  binomlem  11284
  Copyright terms: Public domain W3C validator