ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumss GIF version

Theorem isumss 11868
Description: Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.)
Hypotheses
Ref Expression
sumss.1 (𝜑𝐴𝐵)
sumss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
sumss.3 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
isumss.adc (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
isumss.m (𝜑𝑀 ∈ ℤ)
sumss.4 (𝜑𝐵 ⊆ (ℤ𝑀))
isumss.bdc (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
Assertion
Ref Expression
isumss (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘,𝑗   𝐵,𝑘,𝑗   𝐶,𝑗   𝑗,𝑀,𝑘   𝜑,𝑘,𝑗
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem isumss
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2209 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 isumss.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 sumss.1 . . . . 5 (𝜑𝐴𝐵)
4 sumss.4 . . . . 5 (𝜑𝐵 ⊆ (ℤ𝑀))
53, 4sstrd 3214 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑀))
6 simpr 110 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
7 simpr 110 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → 𝑚𝐴)
8 sumss.2 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
98ralrimiva 2583 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
109ad2antrr 488 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → ∀𝑘𝐴 𝐶 ∈ ℂ)
11 nfcsb1v 3137 . . . . . . . . . 10 𝑘𝑚 / 𝑘𝐶
1211nfel1 2363 . . . . . . . . 9 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
13 csbeq1a 3113 . . . . . . . . . 10 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
1413eleq1d 2278 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
1512, 14rspc 2881 . . . . . . . 8 (𝑚𝐴 → (∀𝑘𝐴 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
167, 10, 15sylc 62 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
17 0cnd 8107 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ ¬ 𝑚𝐴) → 0 ∈ ℂ)
18 eleq1w 2270 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑗𝐴𝑚𝐴))
1918dcbid 842 . . . . . . . 8 (𝑗 = 𝑚 → (DECID 𝑗𝐴DECID 𝑚𝐴))
20 isumss.adc . . . . . . . . 9 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
2120adantr 276 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
2219, 21, 6rspcdva 2892 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐴)
2316, 17, 22ifcldadc 3612 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
24 nfcv 2352 . . . . . . 7 𝑘𝑚
25 nfv 1554 . . . . . . . 8 𝑘 𝑚𝐴
26 nfcv 2352 . . . . . . . 8 𝑘0
2725, 11, 26nfif 3611 . . . . . . 7 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
28 eleq1w 2270 . . . . . . . 8 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
2928, 13ifbieq1d 3605 . . . . . . 7 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐶, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
30 eqid 2209 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)) = (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))
3124, 27, 29, 30fvmptf 5700 . . . . . 6 ((𝑚 ∈ (ℤ𝑀) ∧ if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
326, 23, 31syl2anc 411 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
33 eqid 2209 . . . . . . . 8 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
3433fvmpts 5685 . . . . . . 7 ((𝑚𝐴𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
357, 16, 34syl2anc 411 . . . . . 6 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
3635, 22ifeq1dadc 3613 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
3732, 36eqtr4d 2245 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0))
388fmpttd 5763 . . . . 5 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
3938ffvelcdmda 5743 . . . 4 ((𝜑𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
401, 2, 5, 37, 20, 39zsumdc 11861 . . 3 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)))))
41 dfss1 3388 . . . . . . . . . 10 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
423, 41sylib 122 . . . . . . . . 9 (𝜑 → (𝐵𝐴) = 𝐴)
4342eleq2d 2279 . . . . . . . 8 (𝜑 → (𝑚 ∈ (𝐵𝐴) ↔ 𝑚𝐴))
44 elin 3367 . . . . . . . 8 (𝑚 ∈ (𝐵𝐴) ↔ (𝑚𝐵𝑚𝐴))
4543, 44bitr3di 195 . . . . . . 7 (𝜑 → (𝑚𝐴 ↔ (𝑚𝐵𝑚𝐴)))
4645adantr 276 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝑚𝐴 ↔ (𝑚𝐵𝑚𝐴)))
4746ifbid 3604 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0))
48 simplr 528 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → 𝑚𝐵)
4916adantlr 477 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
50 eqid 2209 . . . . . . . . . . 11 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
5150fvmpts 5685 . . . . . . . . . 10 ((𝑚𝐵𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
5248, 49, 51syl2anc 411 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
53 simpr 110 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → 𝑚𝐴)
5453iftrued 3589 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
5552, 54eqtr4d 2245 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
56 simplr 528 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚𝐵)
57 simpr 110 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ¬ 𝑚𝐴)
5856, 57eldifd 3187 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚 ∈ (𝐵𝐴))
59 sumss.3 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
6059ralrimiva 2583 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 0)
6160ad3antrrr 492 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 0)
6211nfeq1 2362 . . . . . . . . . . 11 𝑘𝑚 / 𝑘𝐶 = 0
6313eqeq1d 2218 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝐶 = 0 ↔ 𝑚 / 𝑘𝐶 = 0))
6462, 63rspc 2881 . . . . . . . . . 10 (𝑚 ∈ (𝐵𝐴) → (∀𝑘 ∈ (𝐵𝐴)𝐶 = 0 → 𝑚 / 𝑘𝐶 = 0))
6558, 61, 64sylc 62 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚 / 𝑘𝐶 = 0)
66 0cnd 8107 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 0 ∈ ℂ)
6765, 66eqeltrd 2286 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
6856, 67, 51syl2anc 411 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
6957iffalsed 3592 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
7065, 68, 693eqtr4d 2252 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
7122adantr 276 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) → DECID 𝑚𝐴)
72 exmiddc 840 . . . . . . . . 9 (DECID 𝑚𝐴 → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
7371, 72syl 14 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
7455, 70, 73mpjaodan 802 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
75 eleq1w 2270 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑗𝐵𝑚𝐵))
7675dcbid 842 . . . . . . . 8 (𝑗 = 𝑚 → (DECID 𝑗𝐵DECID 𝑚𝐵))
77 isumss.bdc . . . . . . . . 9 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
7877adantr 276 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
7976, 78, 6rspcdva 2892 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐵)
8074, 79ifeq1dadc 3613 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0) = if(𝑚𝐵, if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0), 0))
81 ifandc 3623 . . . . . . 7 (DECID 𝑚𝐵 → if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0) = if(𝑚𝐵, if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0), 0))
8279, 81syl 14 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0) = if(𝑚𝐵, if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0), 0))
8380, 82eqtr4d 2245 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0) = if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0))
8447, 32, 833eqtr4d 2252 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0))
858adantlr 477 . . . . . . 7 (((𝜑𝑘𝐵) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
86 simpll 527 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝜑)
87 simplr 528 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝑘𝐵)
88 simpr 110 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → ¬ 𝑘𝐴)
8987, 88eldifd 3187 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝑘 ∈ (𝐵𝐴))
9086, 89, 59syl2anc 411 . . . . . . . 8 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝐶 = 0)
91 0cnd 8107 . . . . . . . 8 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 0 ∈ ℂ)
9290, 91eqeltrd 2286 . . . . . . 7 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝐶 ∈ ℂ)
93 eleq1w 2270 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
9493dcbid 842 . . . . . . . . 9 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
9520adantr 276 . . . . . . . . 9 ((𝜑𝑘𝐵) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
964sselda 3204 . . . . . . . . 9 ((𝜑𝑘𝐵) → 𝑘 ∈ (ℤ𝑀))
9794, 95, 96rspcdva 2892 . . . . . . . 8 ((𝜑𝑘𝐵) → DECID 𝑘𝐴)
98 exmiddc 840 . . . . . . . 8 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
9997, 98syl 14 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
10085, 92, 99mpjaodan 802 . . . . . 6 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
101100fmpttd 5763 . . . . 5 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
102101ffvelcdmda 5743 . . . 4 ((𝜑𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
1031, 2, 4, 84, 77, 102zsumdc 11861 . . 3 (𝜑 → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)))))
10440, 103eqtr4d 2245 . 2 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
105 sumfct 11851 . . 3 (∀𝑘𝐴 𝐶 ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
1069, 105syl 14 . 2 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
107100ralrimiva 2583 . . 3 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
108 sumfct 11851 . . 3 (∀𝑘𝐵 𝐶 ∈ ℂ → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶)
109107, 108syl 14 . 2 (𝜑 → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶)
110104, 106, 1093eqtr3d 2250 1 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 712  DECID wdc 838   = wceq 1375  wcel 2180  wral 2488  csb 3104  cdif 3174  cin 3176  wss 3177  ifcif 3582  cmpt 4124  cfv 5294  cc 7965  0cc0 7967   + caddc 7970  cz 9414  cuz 9690  seqcseq 10636  cli 11755  Σcsu 11830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831
This theorem is referenced by:  fisumss  11869  isumss2  11870  binomlem  11960
  Copyright terms: Public domain W3C validator