| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2196 |
. . . 4
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
| 2 | | isumss.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 3 | | sumss.1 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 4 | | sumss.4 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ (ℤ≥‘𝑀)) |
| 5 | 3, 4 | sstrd 3194 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
| 6 | | simpr 110 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → 𝑚 ∈ (ℤ≥‘𝑀)) |
| 7 | | simpr 110 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ 𝐴) |
| 8 | | sumss.2 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 9 | 8 | ralrimiva 2570 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) |
| 10 | 9 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐴) → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) |
| 11 | | nfcsb1v 3117 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 |
| 12 | 11 | nfel1 2350 |
. . . . . . . . 9
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ |
| 13 | | csbeq1a 3093 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → 𝐶 = ⦋𝑚 / 𝑘⦌𝐶) |
| 14 | 13 | eleq1d 2265 |
. . . . . . . . 9
⊢ (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ)) |
| 15 | 12, 14 | rspc 2862 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ)) |
| 16 | 7, 10, 15 | sylc 62 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
| 17 | | 0cnd 8036 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑚 ∈ 𝐴) → 0 ∈ ℂ) |
| 18 | | eleq1w 2257 |
. . . . . . . . 9
⊢ (𝑗 = 𝑚 → (𝑗 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴)) |
| 19 | 18 | dcbid 839 |
. . . . . . . 8
⊢ (𝑗 = 𝑚 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑚 ∈ 𝐴)) |
| 20 | | isumss.adc |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) |
| 21 | 20 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) |
| 22 | 19, 21, 6 | rspcdva 2873 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → DECID
𝑚 ∈ 𝐴) |
| 23 | 16, 17, 22 | ifcldadc 3591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) ∈ ℂ) |
| 24 | | nfcv 2339 |
. . . . . . 7
⊢
Ⅎ𝑘𝑚 |
| 25 | | nfv 1542 |
. . . . . . . 8
⊢
Ⅎ𝑘 𝑚 ∈ 𝐴 |
| 26 | | nfcv 2339 |
. . . . . . . 8
⊢
Ⅎ𝑘0 |
| 27 | 25, 11, 26 | nfif 3590 |
. . . . . . 7
⊢
Ⅎ𝑘if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) |
| 28 | | eleq1w 2257 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → (𝑘 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴)) |
| 29 | 28, 13 | ifbieq1d 3584 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → if(𝑘 ∈ 𝐴, 𝐶, 0) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
| 30 | | eqid 2196 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0)) = (𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0)) |
| 31 | 24, 27, 29, 30 | fvmptf 5657 |
. . . . . 6
⊢ ((𝑚 ∈
(ℤ≥‘𝑀) ∧ if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) ∈ ℂ) → ((𝑘 ∈
(ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
| 32 | 6, 23, 31 | syl2anc 411 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
| 33 | | eqid 2196 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶) |
| 34 | 33 | fvmpts 5642 |
. . . . . . 7
⊢ ((𝑚 ∈ 𝐴 ∧ ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ⦋𝑚 / 𝑘⦌𝐶) |
| 35 | 7, 16, 34 | syl2anc 411 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ⦋𝑚 / 𝑘⦌𝐶) |
| 36 | 35, 22 | ifeq1dadc 3592 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 0) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
| 37 | 32, 36 | eqtr4d 2232 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 0)) |
| 38 | 8 | fmpttd 5720 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ) |
| 39 | 38 | ffvelcdmda 5700 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) ∈ ℂ) |
| 40 | 1, 2, 5, 37, 20, 39 | zsumdc 11566 |
. . 3
⊢ (𝜑 → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))))) |
| 41 | | dfss1 3368 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) |
| 42 | 3, 41 | sylib 122 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ∩ 𝐴) = 𝐴) |
| 43 | 42 | eleq2d 2266 |
. . . . . . . 8
⊢ (𝜑 → (𝑚 ∈ (𝐵 ∩ 𝐴) ↔ 𝑚 ∈ 𝐴)) |
| 44 | | elin 3347 |
. . . . . . . 8
⊢ (𝑚 ∈ (𝐵 ∩ 𝐴) ↔ (𝑚 ∈ 𝐵 ∧ 𝑚 ∈ 𝐴)) |
| 45 | 43, 44 | bitr3di 195 |
. . . . . . 7
⊢ (𝜑 → (𝑚 ∈ 𝐴 ↔ (𝑚 ∈ 𝐵 ∧ 𝑚 ∈ 𝐴))) |
| 46 | 45 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → (𝑚 ∈ 𝐴 ↔ (𝑚 ∈ 𝐵 ∧ 𝑚 ∈ 𝐴))) |
| 47 | 46 | ifbid 3583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = if((𝑚 ∈ 𝐵 ∧ 𝑚 ∈ 𝐴), ⦋𝑚 / 𝑘⦌𝐶, 0)) |
| 48 | | simplr 528 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ 𝐵) |
| 49 | 16 | adantlr 477 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ 𝑚 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
| 50 | | eqid 2196 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐵 ↦ 𝐶) = (𝑘 ∈ 𝐵 ↦ 𝐶) |
| 51 | 50 | fvmpts 5642 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ 𝐵 ∧ ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ⦋𝑚 / 𝑘⦌𝐶) |
| 52 | 48, 49, 51 | syl2anc 411 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ⦋𝑚 / 𝑘⦌𝐶) |
| 53 | | simpr 110 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ 𝐴) |
| 54 | 53 | iftrued 3569 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = ⦋𝑚 / 𝑘⦌𝐶) |
| 55 | 52, 54 | eqtr4d 2232 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
| 56 | | simplr 528 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → 𝑚 ∈ 𝐵) |
| 57 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → ¬ 𝑚 ∈ 𝐴) |
| 58 | 56, 57 | eldifd 3167 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → 𝑚 ∈ (𝐵 ∖ 𝐴)) |
| 59 | | sumss.3 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) |
| 60 | 59 | ralrimiva 2570 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ (𝐵 ∖ 𝐴)𝐶 = 0) |
| 61 | 60 | ad3antrrr 492 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → ∀𝑘 ∈ (𝐵 ∖ 𝐴)𝐶 = 0) |
| 62 | 11 | nfeq1 2349 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 = 0 |
| 63 | 13 | eqeq1d 2205 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (𝐶 = 0 ↔ ⦋𝑚 / 𝑘⦌𝐶 = 0)) |
| 64 | 62, 63 | rspc 2862 |
. . . . . . . . . 10
⊢ (𝑚 ∈ (𝐵 ∖ 𝐴) → (∀𝑘 ∈ (𝐵 ∖ 𝐴)𝐶 = 0 → ⦋𝑚 / 𝑘⦌𝐶 = 0)) |
| 65 | 58, 61, 64 | sylc 62 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐶 = 0) |
| 66 | | 0cnd 8036 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → 0 ∈ ℂ) |
| 67 | 65, 66 | eqeltrd 2273 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
| 68 | 56, 67, 51 | syl2anc 411 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ⦋𝑚 / 𝑘⦌𝐶) |
| 69 | 57 | iffalsed 3572 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = 0) |
| 70 | 65, 68, 69 | 3eqtr4d 2239 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) ∧ ¬ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
| 71 | 22 | adantr 276 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) → DECID 𝑚 ∈ 𝐴) |
| 72 | | exmiddc 837 |
. . . . . . . . 9
⊢
(DECID 𝑚 ∈ 𝐴 → (𝑚 ∈ 𝐴 ∨ ¬ 𝑚 ∈ 𝐴)) |
| 73 | 71, 72 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) → (𝑚 ∈ 𝐴 ∨ ¬ 𝑚 ∈ 𝐴)) |
| 74 | 55, 70, 73 | mpjaodan 799 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑚 ∈ 𝐵) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
| 75 | | eleq1w 2257 |
. . . . . . . . 9
⊢ (𝑗 = 𝑚 → (𝑗 ∈ 𝐵 ↔ 𝑚 ∈ 𝐵)) |
| 76 | 75 | dcbid 839 |
. . . . . . . 8
⊢ (𝑗 = 𝑚 → (DECID 𝑗 ∈ 𝐵 ↔ DECID 𝑚 ∈ 𝐵)) |
| 77 | | isumss.bdc |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) |
| 78 | 77 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) |
| 79 | 76, 78, 6 | rspcdva 2873 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → DECID
𝑚 ∈ 𝐵) |
| 80 | 74, 79 | ifeq1dadc 3592 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 0) = if(𝑚 ∈ 𝐵, if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0), 0)) |
| 81 | | ifandc 3600 |
. . . . . . 7
⊢
(DECID 𝑚 ∈ 𝐵 → if((𝑚 ∈ 𝐵 ∧ 𝑚 ∈ 𝐴), ⦋𝑚 / 𝑘⦌𝐶, 0) = if(𝑚 ∈ 𝐵, if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0), 0)) |
| 82 | 79, 81 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → if((𝑚 ∈ 𝐵 ∧ 𝑚 ∈ 𝐴), ⦋𝑚 / 𝑘⦌𝐶, 0) = if(𝑚 ∈ 𝐵, if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0), 0)) |
| 83 | 80, 82 | eqtr4d 2232 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 0) = if((𝑚 ∈ 𝐵 ∧ 𝑚 ∈ 𝐴), ⦋𝑚 / 𝑘⦌𝐶, 0)) |
| 84 | 47, 32, 83 | 3eqtr4d 2239 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))‘𝑚) = if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 0)) |
| 85 | 8 | adantlr 477 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 86 | | simpll 527 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → 𝜑) |
| 87 | | simplr 528 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐵) |
| 88 | | simpr 110 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → ¬ 𝑘 ∈ 𝐴) |
| 89 | 87, 88 | eldifd 3167 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → 𝑘 ∈ (𝐵 ∖ 𝐴)) |
| 90 | 86, 89, 59 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → 𝐶 = 0) |
| 91 | | 0cnd 8036 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → 0 ∈ ℂ) |
| 92 | 90, 91 | eqeltrd 2273 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 93 | | eleq1w 2257 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
| 94 | 93 | dcbid 839 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑘 ∈ 𝐴)) |
| 95 | 20 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) |
| 96 | 4 | sselda 3184 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 97 | 94, 95, 96 | rspcdva 2873 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → DECID 𝑘 ∈ 𝐴) |
| 98 | | exmiddc 837 |
. . . . . . . 8
⊢
(DECID 𝑘 ∈ 𝐴 → (𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴)) |
| 99 | 97, 98 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴)) |
| 100 | 85, 92, 99 | mpjaodan 799 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 101 | 100 | fmpttd 5720 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ 𝐶):𝐵⟶ℂ) |
| 102 | 101 | ffvelcdmda 5700 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) ∈ ℂ) |
| 103 | 1, 2, 4, 84, 77, 102 | zsumdc 11566 |
. . 3
⊢ (𝜑 → Σ𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐴, 𝐶, 0))))) |
| 104 | 40, 103 | eqtr4d 2232 |
. 2
⊢ (𝜑 → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
| 105 | | sumfct 11556 |
. . 3
⊢
(∀𝑘 ∈
𝐴 𝐶 ∈ ℂ → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐶) |
| 106 | 9, 105 | syl 14 |
. 2
⊢ (𝜑 → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐶) |
| 107 | 100 | ralrimiva 2570 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
| 108 | | sumfct 11556 |
. . 3
⊢
(∀𝑘 ∈
𝐵 𝐶 ∈ ℂ → Σ𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐵 𝐶) |
| 109 | 107, 108 | syl 14 |
. 2
⊢ (𝜑 → Σ𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐵 𝐶) |
| 110 | 104, 106,
109 | 3eqtr3d 2237 |
1
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |