ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumss GIF version

Theorem isumss 11332
Description: Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.)
Hypotheses
Ref Expression
sumss.1 (𝜑𝐴𝐵)
sumss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
sumss.3 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
isumss.adc (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
isumss.m (𝜑𝑀 ∈ ℤ)
sumss.4 (𝜑𝐵 ⊆ (ℤ𝑀))
isumss.bdc (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
Assertion
Ref Expression
isumss (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘,𝑗   𝐵,𝑘,𝑗   𝐶,𝑗   𝑗,𝑀,𝑘   𝜑,𝑘,𝑗
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem isumss
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 isumss.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 sumss.1 . . . . 5 (𝜑𝐴𝐵)
4 sumss.4 . . . . 5 (𝜑𝐵 ⊆ (ℤ𝑀))
53, 4sstrd 3152 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑀))
6 simpr 109 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
7 simpr 109 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → 𝑚𝐴)
8 sumss.2 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
98ralrimiva 2539 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
109ad2antrr 480 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → ∀𝑘𝐴 𝐶 ∈ ℂ)
11 nfcsb1v 3078 . . . . . . . . . 10 𝑘𝑚 / 𝑘𝐶
1211nfel1 2319 . . . . . . . . 9 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
13 csbeq1a 3054 . . . . . . . . . 10 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
1413eleq1d 2235 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
1512, 14rspc 2824 . . . . . . . 8 (𝑚𝐴 → (∀𝑘𝐴 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
167, 10, 15sylc 62 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
17 0cnd 7892 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ ¬ 𝑚𝐴) → 0 ∈ ℂ)
18 eleq1w 2227 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑗𝐴𝑚𝐴))
1918dcbid 828 . . . . . . . 8 (𝑗 = 𝑚 → (DECID 𝑗𝐴DECID 𝑚𝐴))
20 isumss.adc . . . . . . . . 9 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
2120adantr 274 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
2219, 21, 6rspcdva 2835 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐴)
2316, 17, 22ifcldadc 3549 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
24 nfcv 2308 . . . . . . 7 𝑘𝑚
25 nfv 1516 . . . . . . . 8 𝑘 𝑚𝐴
26 nfcv 2308 . . . . . . . 8 𝑘0
2725, 11, 26nfif 3548 . . . . . . 7 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
28 eleq1w 2227 . . . . . . . 8 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
2928, 13ifbieq1d 3542 . . . . . . 7 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐶, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
30 eqid 2165 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)) = (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))
3124, 27, 29, 30fvmptf 5578 . . . . . 6 ((𝑚 ∈ (ℤ𝑀) ∧ if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
326, 23, 31syl2anc 409 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
33 eqid 2165 . . . . . . . 8 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
3433fvmpts 5564 . . . . . . 7 ((𝑚𝐴𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
357, 16, 34syl2anc 409 . . . . . 6 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
3635, 22ifeq1dadc 3550 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
3732, 36eqtr4d 2201 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 0))
388fmpttd 5640 . . . . 5 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
3938ffvelrnda 5620 . . . 4 ((𝜑𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
401, 2, 5, 37, 20, 39zsumdc 11325 . . 3 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)))))
41 dfss1 3326 . . . . . . . . . 10 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
423, 41sylib 121 . . . . . . . . 9 (𝜑 → (𝐵𝐴) = 𝐴)
4342eleq2d 2236 . . . . . . . 8 (𝜑 → (𝑚 ∈ (𝐵𝐴) ↔ 𝑚𝐴))
44 elin 3305 . . . . . . . 8 (𝑚 ∈ (𝐵𝐴) ↔ (𝑚𝐵𝑚𝐴))
4543, 44bitr3di 194 . . . . . . 7 (𝜑 → (𝑚𝐴 ↔ (𝑚𝐵𝑚𝐴)))
4645adantr 274 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝑚𝐴 ↔ (𝑚𝐵𝑚𝐴)))
4746ifbid 3541 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0))
48 simplr 520 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → 𝑚𝐵)
4916adantlr 469 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
50 eqid 2165 . . . . . . . . . . 11 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
5150fvmpts 5564 . . . . . . . . . 10 ((𝑚𝐵𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
5248, 49, 51syl2anc 409 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
53 simpr 109 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → 𝑚𝐴)
5453iftrued 3527 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
5552, 54eqtr4d 2201 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
56 simplr 520 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚𝐵)
57 simpr 109 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ¬ 𝑚𝐴)
5856, 57eldifd 3126 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚 ∈ (𝐵𝐴))
59 sumss.3 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
6059ralrimiva 2539 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 0)
6160ad3antrrr 484 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 0)
6211nfeq1 2318 . . . . . . . . . . 11 𝑘𝑚 / 𝑘𝐶 = 0
6313eqeq1d 2174 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝐶 = 0 ↔ 𝑚 / 𝑘𝐶 = 0))
6462, 63rspc 2824 . . . . . . . . . 10 (𝑚 ∈ (𝐵𝐴) → (∀𝑘 ∈ (𝐵𝐴)𝐶 = 0 → 𝑚 / 𝑘𝐶 = 0))
6558, 61, 64sylc 62 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚 / 𝑘𝐶 = 0)
66 0cnd 7892 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 0 ∈ ℂ)
6765, 66eqeltrd 2243 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
6856, 67, 51syl2anc 409 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
6957iffalsed 3530 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
7065, 68, 693eqtr4d 2208 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) ∧ ¬ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
7122adantr 274 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) → DECID 𝑚𝐴)
72 exmiddc 826 . . . . . . . . 9 (DECID 𝑚𝐴 → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
7371, 72syl 14 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
7455, 70, 73mpjaodan 788 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
75 eleq1w 2227 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑗𝐵𝑚𝐵))
7675dcbid 828 . . . . . . . 8 (𝑗 = 𝑚 → (DECID 𝑗𝐵DECID 𝑚𝐵))
77 isumss.bdc . . . . . . . . 9 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
7877adantr 274 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
7976, 78, 6rspcdva 2835 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐵)
8074, 79ifeq1dadc 3550 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0) = if(𝑚𝐵, if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0), 0))
81 ifandc 3557 . . . . . . 7 (DECID 𝑚𝐵 → if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0) = if(𝑚𝐵, if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0), 0))
8279, 81syl 14 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0) = if(𝑚𝐵, if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0), 0))
8380, 82eqtr4d 2201 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0) = if((𝑚𝐵𝑚𝐴), 𝑚 / 𝑘𝐶, 0))
8447, 32, 833eqtr4d 2208 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 0))
858adantlr 469 . . . . . . 7 (((𝜑𝑘𝐵) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
86 simpll 519 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝜑)
87 simplr 520 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝑘𝐵)
88 simpr 109 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → ¬ 𝑘𝐴)
8987, 88eldifd 3126 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝑘 ∈ (𝐵𝐴))
9086, 89, 59syl2anc 409 . . . . . . . 8 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝐶 = 0)
91 0cnd 7892 . . . . . . . 8 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 0 ∈ ℂ)
9290, 91eqeltrd 2243 . . . . . . 7 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝐶 ∈ ℂ)
93 eleq1w 2227 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
9493dcbid 828 . . . . . . . . 9 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
9520adantr 274 . . . . . . . . 9 ((𝜑𝑘𝐵) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
964sselda 3142 . . . . . . . . 9 ((𝜑𝑘𝐵) → 𝑘 ∈ (ℤ𝑀))
9794, 95, 96rspcdva 2835 . . . . . . . 8 ((𝜑𝑘𝐵) → DECID 𝑘𝐴)
98 exmiddc 826 . . . . . . . 8 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
9997, 98syl 14 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
10085, 92, 99mpjaodan 788 . . . . . 6 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
101100fmpttd 5640 . . . . 5 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
102101ffvelrnda 5620 . . . 4 ((𝜑𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
1031, 2, 4, 84, 77, 102zsumdc 11325 . . 3 (𝜑 → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐴, 𝐶, 0)))))
10440, 103eqtr4d 2201 . 2 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
105 sumfct 11315 . . 3 (∀𝑘𝐴 𝐶 ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
1069, 105syl 14 . 2 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
107100ralrimiva 2539 . . 3 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
108 sumfct 11315 . . 3 (∀𝑘𝐵 𝐶 ∈ ℂ → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶)
109107, 108syl 14 . 2 (𝜑 → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶)
110104, 106, 1093eqtr3d 2206 1 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824   = wceq 1343  wcel 2136  wral 2444  csb 3045  cdif 3113  cin 3115  wss 3116  ifcif 3520  cmpt 4043  cfv 5188  cc 7751  0cc0 7753   + caddc 7756  cz 9191  cuz 9466  seqcseq 10380  cli 11219  Σcsu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  fisumss  11333  isumss2  11334  binomlem  11424
  Copyright terms: Public domain W3C validator