| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nndifsnid | GIF version | ||
| Description: If we remove a single element from a natural number then put it back in, we end up with the original natural number. This strengthens difsnss 3769 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 31-Aug-2021.) |
| Ref | Expression |
|---|---|
| nndifsnid | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn 4643 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑥 ∈ ω) | |
| 2 | 1 | expcom 116 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝑥 ∈ 𝐴 → 𝑥 ∈ ω)) |
| 3 | elnn 4643 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑦 ∈ ω) | |
| 4 | 3 | expcom 116 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝑦 ∈ 𝐴 → 𝑦 ∈ ω)) |
| 5 | 2, 4 | anim12d 335 | . . . 4 ⊢ (𝐴 ∈ ω → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ ω ∧ 𝑦 ∈ ω))) |
| 6 | nndceq 6566 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → DECID 𝑥 = 𝑦) | |
| 7 | 5, 6 | syl6 33 | . . 3 ⊢ (𝐴 ∈ ω → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → DECID 𝑥 = 𝑦)) |
| 8 | 7 | ralrimivv 2578 | . 2 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 9 | dcdifsnid 6571 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) | |
| 10 | 8, 9 | sylan 283 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∖ cdif 3154 ∪ cun 3155 {csn 3623 ωcom 4627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 |
| This theorem is referenced by: phplem2 6923 |
| Copyright terms: Public domain | W3C validator |