![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nndifsnid | GIF version |
Description: If we remove a single element from a natural number then put it back in, we end up with the original natural number. This strengthens difsnss 3613 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 31-Aug-2021.) |
Ref | Expression |
---|---|
nndifsnid | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn 4457 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑥 ∈ ω) | |
2 | 1 | expcom 115 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝑥 ∈ 𝐴 → 𝑥 ∈ ω)) |
3 | elnn 4457 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑦 ∈ ω) | |
4 | 3 | expcom 115 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝑦 ∈ 𝐴 → 𝑦 ∈ ω)) |
5 | 2, 4 | anim12d 331 | . . . 4 ⊢ (𝐴 ∈ ω → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ ω ∧ 𝑦 ∈ ω))) |
6 | nndceq 6325 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → DECID 𝑥 = 𝑦) | |
7 | 5, 6 | syl6 33 | . . 3 ⊢ (𝐴 ∈ ω → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → DECID 𝑥 = 𝑦)) |
8 | 7 | ralrimivv 2472 | . 2 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
9 | dcdifsnid 6330 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) | |
10 | 8, 9 | sylan 279 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 DECID wdc 786 = wceq 1299 ∈ wcel 1448 ∀wral 2375 ∖ cdif 3018 ∪ cun 3019 {csn 3474 ωcom 4442 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-iinf 4440 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-3or 931 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-ral 2380 df-rex 2381 df-v 2643 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-uni 3684 df-int 3719 df-tr 3967 df-iord 4226 df-on 4228 df-suc 4231 df-iom 4443 |
This theorem is referenced by: phplem2 6676 |
Copyright terms: Public domain | W3C validator |