ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndifsnid GIF version

Theorem nndifsnid 6595
Description: If we remove a single element from a natural number then put it back in, we end up with the original natural number. This strengthens difsnss 3779 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 31-Aug-2021.)
Assertion
Ref Expression
nndifsnid ((𝐴 ∈ ω ∧ 𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)

Proof of Theorem nndifsnid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 4655 . . . . . 6 ((𝑥𝐴𝐴 ∈ ω) → 𝑥 ∈ ω)
21expcom 116 . . . . 5 (𝐴 ∈ ω → (𝑥𝐴𝑥 ∈ ω))
3 elnn 4655 . . . . . 6 ((𝑦𝐴𝐴 ∈ ω) → 𝑦 ∈ ω)
43expcom 116 . . . . 5 (𝐴 ∈ ω → (𝑦𝐴𝑦 ∈ ω))
52, 4anim12d 335 . . . 4 (𝐴 ∈ ω → ((𝑥𝐴𝑦𝐴) → (𝑥 ∈ ω ∧ 𝑦 ∈ ω)))
6 nndceq 6587 . . . 4 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → DECID 𝑥 = 𝑦)
75, 6syl6 33 . . 3 (𝐴 ∈ ω → ((𝑥𝐴𝑦𝐴) → DECID 𝑥 = 𝑦))
87ralrimivv 2587 . 2 (𝐴 ∈ ω → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
9 dcdifsnid 6592 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
108, 9sylan 283 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836   = wceq 1373  wcel 2176  wral 2484  cdif 3163  cun 3164  {csn 3633  ωcom 4639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-int 3886  df-tr 4144  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640
This theorem is referenced by:  phplem2  6952
  Copyright terms: Public domain W3C validator