![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nndifsnid | GIF version |
Description: If we remove a single element from a natural number then put it back in, we end up with the original natural number. This strengthens difsnss 3753 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 31-Aug-2021.) |
Ref | Expression |
---|---|
nndifsnid | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn 4623 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑥 ∈ ω) | |
2 | 1 | expcom 116 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝑥 ∈ 𝐴 → 𝑥 ∈ ω)) |
3 | elnn 4623 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑦 ∈ ω) | |
4 | 3 | expcom 116 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝑦 ∈ 𝐴 → 𝑦 ∈ ω)) |
5 | 2, 4 | anim12d 335 | . . . 4 ⊢ (𝐴 ∈ ω → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ ω ∧ 𝑦 ∈ ω))) |
6 | nndceq 6525 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → DECID 𝑥 = 𝑦) | |
7 | 5, 6 | syl6 33 | . . 3 ⊢ (𝐴 ∈ ω → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → DECID 𝑥 = 𝑦)) |
8 | 7 | ralrimivv 2571 | . 2 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
9 | dcdifsnid 6530 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) | |
10 | 8, 9 | sylan 283 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ∖ cdif 3141 ∪ cun 3142 {csn 3607 ωcom 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-uni 3825 df-int 3860 df-tr 4117 df-iord 4384 df-on 4386 df-suc 4389 df-iom 4608 |
This theorem is referenced by: phplem2 6882 |
Copyright terms: Public domain | W3C validator |