| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqsstrid | GIF version | ||
| Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) | 
| Ref | Expression | 
|---|---|
| eqsstrid.1 | ⊢ 𝐴 = 𝐵 | 
| eqsstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | 
| Ref | Expression | 
|---|---|
| eqsstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqsstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 2 | eqsstrid.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | sseq1i 3209 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) | 
| 4 | 1, 3 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: eqsstrrid 3230 inss 3393 difsnss 3768 tpssi 3789 peano5 4634 xpsspw 4775 iotanul 5234 iotass 5236 fun 5430 fun11iun 5525 fvss 5572 fmpt 5712 fliftrel 5839 opabbrex 5966 1stcof 6221 2ndcof 6222 tfrlemibacc 6384 tfrlemibfn 6386 tfr1onlemssrecs 6397 tfr1onlembacc 6400 tfr1onlembfn 6402 tfrcllemssrecs 6410 tfrcllembacc 6413 tfrcllembfn 6415 caucvgprlemladdrl 7745 peano5nnnn 7959 peano5nni 8993 un0addcl 9282 un0mulcl 9283 4sqlemafi 12564 4sqlemffi 12565 4sqleminfi 12566 4sqlem11 12570 4sqlem19 12578 strleund 12781 mgmidsssn0 13027 lsptpcl 13950 cnptopco 14458 cnconst2 14469 xmetresbl 14676 blsscls2 14729 perfectlem2 15236 bj-omtrans 15602 | 
| Copyright terms: Public domain | W3C validator |