| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrid | GIF version | ||
| Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrid.1 | ⊢ 𝐴 = 𝐵 |
| eqsstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 2 | eqsstrid.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | sseq1i 3218 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| 4 | 1, 3 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: eqsstrrid 3239 inss 3402 difsnss 3778 tpssi 3799 peano5 4644 xpsspw 4785 iotanul 5244 iotass 5246 fun 5442 fun11iun 5537 fvss 5584 fmpt 5724 fliftrel 5851 ovssunirng 5969 opabbrex 5979 1stcof 6239 2ndcof 6240 tfrlemibacc 6402 tfrlemibfn 6404 tfr1onlemssrecs 6415 tfr1onlembacc 6418 tfr1onlembfn 6420 tfrcllemssrecs 6428 tfrcllembacc 6431 tfrcllembfn 6433 caucvgprlemladdrl 7773 peano5nnnn 7987 peano5nni 9021 un0addcl 9310 un0mulcl 9311 4sqlemafi 12637 4sqlemffi 12638 4sqleminfi 12639 4sqlem11 12643 4sqlem19 12651 strleund 12854 mgmidsssn0 13134 lsptpcl 14074 cnptopco 14612 cnconst2 14623 xmetresbl 14830 blsscls2 14883 perfectlem2 15390 bj-omtrans 15756 |
| Copyright terms: Public domain | W3C validator |