| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrid | GIF version | ||
| Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrid.1 | ⊢ 𝐴 = 𝐵 |
| eqsstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 2 | eqsstrid.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | sseq1i 3223 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| 4 | 1, 3 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: eqsstrrid 3244 inss 3407 difsnss 3785 tpssi 3806 peano5 4654 xpsspw 4795 iotanul 5256 iotass 5258 fun 5459 fun11iun 5555 fvss 5603 fmpt 5743 fliftrel 5874 ovssunirng 5992 opabbrex 6002 1stcof 6262 2ndcof 6263 tfrlemibacc 6425 tfrlemibfn 6427 tfr1onlemssrecs 6438 tfr1onlembacc 6441 tfr1onlembfn 6443 tfrcllemssrecs 6451 tfrcllembacc 6454 tfrcllembfn 6456 caucvgprlemladdrl 7811 peano5nnnn 8025 peano5nni 9059 un0addcl 9348 un0mulcl 9349 4sqlemafi 12793 4sqlemffi 12794 4sqleminfi 12795 4sqlem11 12799 4sqlem19 12807 strleund 13010 mgmidsssn0 13291 lsptpcl 14231 cnptopco 14769 cnconst2 14780 xmetresbl 14987 blsscls2 15040 perfectlem2 15547 bj-omtrans 16030 |
| Copyright terms: Public domain | W3C validator |