| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrid | GIF version | ||
| Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrid.1 | ⊢ 𝐴 = 𝐵 |
| eqsstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 2 | eqsstrid.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | sseq1i 3210 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| 4 | 1, 3 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: eqsstrrid 3231 inss 3394 difsnss 3769 tpssi 3790 peano5 4635 xpsspw 4776 iotanul 5235 iotass 5237 fun 5433 fun11iun 5528 fvss 5575 fmpt 5715 fliftrel 5842 ovssunirng 5960 opabbrex 5970 1stcof 6230 2ndcof 6231 tfrlemibacc 6393 tfrlemibfn 6395 tfr1onlemssrecs 6406 tfr1onlembacc 6409 tfr1onlembfn 6411 tfrcllemssrecs 6419 tfrcllembacc 6422 tfrcllembfn 6424 caucvgprlemladdrl 7764 peano5nnnn 7978 peano5nni 9012 un0addcl 9301 un0mulcl 9302 4sqlemafi 12591 4sqlemffi 12592 4sqleminfi 12593 4sqlem11 12597 4sqlem19 12605 strleund 12808 mgmidsssn0 13088 lsptpcl 14028 cnptopco 14566 cnconst2 14577 xmetresbl 14784 blsscls2 14837 perfectlem2 15344 bj-omtrans 15710 |
| Copyright terms: Public domain | W3C validator |