![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqsstrid | GIF version |
Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrid.1 | ⊢ 𝐴 = 𝐵 |
eqsstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
eqsstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
2 | eqsstrid.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | sseq1i 3205 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
4 | 1, 3 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: eqsstrrid 3226 inss 3389 difsnss 3764 tpssi 3785 peano5 4630 xpsspw 4771 iotanul 5230 iotass 5232 fun 5426 fun11iun 5521 fvss 5568 fmpt 5708 fliftrel 5835 opabbrex 5962 1stcof 6216 2ndcof 6217 tfrlemibacc 6379 tfrlemibfn 6381 tfr1onlemssrecs 6392 tfr1onlembacc 6395 tfr1onlembfn 6397 tfrcllemssrecs 6405 tfrcllembacc 6408 tfrcllembfn 6410 caucvgprlemladdrl 7738 peano5nnnn 7952 peano5nni 8985 un0addcl 9273 un0mulcl 9274 4sqlemafi 12533 4sqlemffi 12534 4sqleminfi 12535 4sqlem11 12539 4sqlem19 12547 strleund 12721 mgmidsssn0 12967 lsptpcl 13890 cnptopco 14390 cnconst2 14401 xmetresbl 14608 blsscls2 14661 bj-omtrans 15448 |
Copyright terms: Public domain | W3C validator |