Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsstrid | GIF version |
Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrid.1 | ⊢ 𝐴 = 𝐵 |
eqsstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
eqsstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
2 | eqsstrid.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | sseq1i 3168 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
4 | 1, 3 | sylibr 133 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: eqsstrrid 3189 inss 3352 difsnss 3719 tpssi 3739 peano5 4575 xpsspw 4716 iotanul 5168 iotass 5170 fun 5360 fun11iun 5453 fvss 5500 fmpt 5635 fliftrel 5760 opabbrex 5886 1stcof 6131 2ndcof 6132 tfrlemibacc 6294 tfrlemibfn 6296 tfr1onlemssrecs 6307 tfr1onlembacc 6310 tfr1onlembfn 6312 tfrcllemssrecs 6320 tfrcllembacc 6323 tfrcllembfn 6325 caucvgprlemladdrl 7619 peano5nnnn 7833 peano5nni 8860 un0addcl 9147 un0mulcl 9148 strleund 12483 mgmidsssn0 12615 cnptopco 12862 cnconst2 12873 xmetresbl 13080 blsscls2 13133 bj-omtrans 13838 |
Copyright terms: Public domain | W3C validator |