![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqsstrid | GIF version |
Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrid.1 | ⊢ 𝐴 = 𝐵 |
eqsstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
eqsstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
2 | eqsstrid.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | sseq1i 3206 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
4 | 1, 3 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: eqsstrrid 3227 inss 3390 difsnss 3765 tpssi 3786 peano5 4631 xpsspw 4772 iotanul 5231 iotass 5233 fun 5427 fun11iun 5522 fvss 5569 fmpt 5709 fliftrel 5836 opabbrex 5963 1stcof 6218 2ndcof 6219 tfrlemibacc 6381 tfrlemibfn 6383 tfr1onlemssrecs 6394 tfr1onlembacc 6397 tfr1onlembfn 6399 tfrcllemssrecs 6407 tfrcllembacc 6410 tfrcllembfn 6412 caucvgprlemladdrl 7740 peano5nnnn 7954 peano5nni 8987 un0addcl 9276 un0mulcl 9277 4sqlemafi 12536 4sqlemffi 12537 4sqleminfi 12538 4sqlem11 12542 4sqlem19 12550 strleund 12724 mgmidsssn0 12970 lsptpcl 13893 cnptopco 14401 cnconst2 14412 xmetresbl 14619 blsscls2 14672 bj-omtrans 15518 |
Copyright terms: Public domain | W3C validator |