| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrid | GIF version | ||
| Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrid.1 | ⊢ 𝐴 = 𝐵 |
| eqsstrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 2 | eqsstrid.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | sseq1i 3250 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| 4 | 1, 3 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: eqsstrrid 3271 inss 3434 difsnss 3813 tpssi 3836 peano5 4689 xpsspw 4830 iotanul 5293 iotass 5295 fun 5496 fun11iun 5592 fvss 5640 fmpt 5784 fliftrel 5915 ovssunirng 6035 opabbrex 6047 1stcof 6307 2ndcof 6308 tfrlemibacc 6470 tfrlemibfn 6472 tfr1onlemssrecs 6483 tfr1onlembacc 6486 tfr1onlembfn 6488 tfrcllemssrecs 6496 tfrcllembacc 6499 tfrcllembfn 6501 caucvgprlemladdrl 7861 peano5nnnn 8075 peano5nni 9109 un0addcl 9398 un0mulcl 9399 4sqlemafi 12913 4sqlemffi 12914 4sqleminfi 12915 4sqlem11 12919 4sqlem19 12927 strleund 13131 mgmidsssn0 13412 lsptpcl 14352 cnptopco 14890 cnconst2 14901 xmetresbl 15108 blsscls2 15161 perfectlem2 15668 setsvtx 15846 bj-omtrans 16277 |
| Copyright terms: Public domain | W3C validator |