ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snssd GIF version

Theorem snssd 3725
Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
snssd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
snssd (𝜑 → {𝐴} ⊆ 𝐵)

Proof of Theorem snssd
StepHypRef Expression
1 snssd.1 . 2 (𝜑𝐴𝐵)
2 snssg 3716 . . 3 (𝐴𝐵 → (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵))
31, 2syl 14 . 2 (𝜑 → (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵))
41, 3mpbid 146 1 (𝜑 → {𝐴} ⊆ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 2141  wss 3121  {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-sn 3589
This theorem is referenced by:  pwntru  4185  ecinxp  6588  xpdom3m  6812  ac6sfi  6876  undifdc  6901  iunfidisj  6923  fidcenumlemr  6932  ssfii  6951  en2other2  7173  un0addcl  9168  un0mulcl  9169  fseq1p1m1  10050  fsumge1  11424  fprodsplit1f  11597  phicl2  12168  ennnfonelemhf1o  12368  0subm  12702  rest0  12973  iscnp4  13012  cnconst2  13027  cnpdis  13036  txdis  13071  txdis1cn  13072  fsumcncntop  13350  dvef  13482  bj-omtrans  13991  pwtrufal  14030
  Copyright terms: Public domain W3C validator