ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snssd GIF version

Theorem snssd 3660
Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
snssd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
snssd (𝜑 → {𝐴} ⊆ 𝐵)

Proof of Theorem snssd
StepHypRef Expression
1 snssd.1 . 2 (𝜑𝐴𝐵)
2 snssg 3651 . . 3 (𝐴𝐵 → (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵))
31, 2syl 14 . 2 (𝜑 → (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵))
41, 3mpbid 146 1 (𝜑 → {𝐴} ⊆ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 1480  wss 3066  {csn 3522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-in 3072  df-ss 3079  df-sn 3528
This theorem is referenced by:  pwntru  4117  ecinxp  6497  xpdom3m  6721  ac6sfi  6785  undifdc  6805  iunfidisj  6827  fidcenumlemr  6836  ssfii  6855  en2other2  7045  un0addcl  9003  un0mulcl  9004  fseq1p1m1  9867  fsumge1  11223  phicl2  11879  ennnfonelemhf1o  11915  rest0  12337  iscnp4  12376  cnconst2  12391  cnpdis  12400  txdis  12435  txdis1cn  12436  fsumcncntop  12714  dvef  12845  bj-omtrans  13143  pwtrufal  13181
  Copyright terms: Public domain W3C validator