![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snssd | GIF version |
Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
snssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Ref | Expression |
---|---|
snssd | ⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | snssg 3752 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2164 ⊆ wss 3153 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 df-sn 3624 |
This theorem is referenced by: pwntru 4228 ecinxp 6664 xpdom3m 6888 ac6sfi 6954 undifdc 6980 iunfidisj 7005 fidcenumlemr 7014 ssfii 7033 en2other2 7256 un0addcl 9273 un0mulcl 9274 fseq1p1m1 10160 fsumge1 11604 fprodsplit1f 11777 phicl2 12352 ennnfonelemhf1o 12570 imasaddfnlemg 12897 imasaddflemg 12899 0subm 13056 gsumvallem2 13065 trivsubgd 13270 trivsubgsnd 13271 trivnsgd 13287 kerf1ghm 13344 lsssn0 13866 lss0ss 13867 lsptpcl 13890 lspsnvsi 13914 lspun0 13921 mulgrhm2 14098 zndvds 14137 rest0 14347 iscnp4 14386 cnconst2 14401 cnpdis 14410 txdis 14445 txdis1cn 14446 fsumcncntop 14724 dvef 14873 plyf 14883 elplyr 14886 elplyd 14887 ply1term 14889 plyaddlem 14895 plymullem 14896 bj-omtrans 15448 pwtrufal 15488 |
Copyright terms: Public domain | W3C validator |