| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssd | GIF version | ||
| Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| snssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| snssd | ⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | snssg 3773 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| 4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2177 ⊆ wss 3170 {csn 3638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-ss 3183 df-sn 3644 |
| This theorem is referenced by: pwntru 4254 ecinxp 6715 xpdom3m 6949 ac6sfi 7016 undifdc 7042 iunfidisj 7069 fidcenumlemr 7078 ssfii 7097 en2other2 7330 pw1m 7365 un0addcl 9358 un0mulcl 9359 fseq1p1m1 10246 fsumge1 11857 fprodsplit1f 12030 bitsinv1 12358 phicl2 12621 ennnfonelemhf1o 12869 imasaddfnlemg 13231 imasaddflemg 13233 0subm 13401 gsumvallem2 13410 trivsubgd 13621 trivsubgsnd 13622 trivnsgd 13638 kerf1ghm 13695 lsssn0 14217 lss0ss 14218 lsptpcl 14241 lspsnvsi 14265 lspun0 14272 mulgrhm2 14457 zndvds 14496 rest0 14736 iscnp4 14775 cnconst2 14790 cnpdis 14799 txdis 14834 txdis1cn 14835 fsumcncntop 15124 dvef 15284 plyf 15294 elplyr 15297 elplyd 15298 ply1term 15300 plyaddlem 15306 plymullem 15307 plycolemc 15315 plycn 15319 dvply2g 15323 perfectlem2 15557 upgr1elem1 15798 bj-omtrans 16061 pwtrufal 16106 |
| Copyright terms: Public domain | W3C validator |