| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssd | GIF version | ||
| Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| snssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| snssd | ⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | snssg 3767 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| 4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2176 ⊆ wss 3166 {csn 3633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-sn 3639 |
| This theorem is referenced by: pwntru 4243 ecinxp 6697 xpdom3m 6929 ac6sfi 6995 undifdc 7021 iunfidisj 7048 fidcenumlemr 7057 ssfii 7076 en2other2 7304 un0addcl 9328 un0mulcl 9329 fseq1p1m1 10216 fsumge1 11772 fprodsplit1f 11945 bitsinv1 12273 phicl2 12536 ennnfonelemhf1o 12784 imasaddfnlemg 13146 imasaddflemg 13148 0subm 13316 gsumvallem2 13325 trivsubgd 13536 trivsubgsnd 13537 trivnsgd 13553 kerf1ghm 13610 lsssn0 14132 lss0ss 14133 lsptpcl 14156 lspsnvsi 14180 lspun0 14187 mulgrhm2 14372 zndvds 14411 rest0 14651 iscnp4 14690 cnconst2 14705 cnpdis 14714 txdis 14749 txdis1cn 14750 fsumcncntop 15039 dvef 15199 plyf 15209 elplyr 15212 elplyd 15213 ply1term 15215 plyaddlem 15221 plymullem 15222 plycolemc 15230 plycn 15234 dvply2g 15238 perfectlem2 15472 bj-omtrans 15892 pwtrufal 15934 |
| Copyright terms: Public domain | W3C validator |