| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssd | GIF version | ||
| Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| snssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| snssd | ⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | snssg 3766 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| 4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2175 ⊆ wss 3165 {csn 3632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-ss 3178 df-sn 3638 |
| This theorem is referenced by: pwntru 4242 ecinxp 6696 xpdom3m 6928 ac6sfi 6994 undifdc 7020 iunfidisj 7047 fidcenumlemr 7056 ssfii 7075 en2other2 7303 un0addcl 9327 un0mulcl 9328 fseq1p1m1 10215 fsumge1 11714 fprodsplit1f 11887 bitsinv1 12215 phicl2 12478 ennnfonelemhf1o 12726 imasaddfnlemg 13088 imasaddflemg 13090 0subm 13258 gsumvallem2 13267 trivsubgd 13478 trivsubgsnd 13479 trivnsgd 13495 kerf1ghm 13552 lsssn0 14074 lss0ss 14075 lsptpcl 14098 lspsnvsi 14122 lspun0 14129 mulgrhm2 14314 zndvds 14353 rest0 14593 iscnp4 14632 cnconst2 14647 cnpdis 14656 txdis 14691 txdis1cn 14692 fsumcncntop 14981 dvef 15141 plyf 15151 elplyr 15154 elplyd 15155 ply1term 15157 plyaddlem 15163 plymullem 15164 plycolemc 15172 plycn 15176 dvply2g 15180 perfectlem2 15414 bj-omtrans 15825 pwtrufal 15867 |
| Copyright terms: Public domain | W3C validator |