Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snssd | GIF version |
Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
snssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Ref | Expression |
---|---|
snssd | ⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | snssg 3692 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
4 | 1, 3 | mpbid 146 | 1 ⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 2128 ⊆ wss 3102 {csn 3560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-in 3108 df-ss 3115 df-sn 3566 |
This theorem is referenced by: pwntru 4160 ecinxp 6555 xpdom3m 6779 ac6sfi 6843 undifdc 6868 iunfidisj 6890 fidcenumlemr 6899 ssfii 6918 en2other2 7131 un0addcl 9123 un0mulcl 9124 fseq1p1m1 9996 fsumge1 11358 fprodsplit1f 11531 phicl2 12088 ennnfonelemhf1o 12142 rest0 12579 iscnp4 12618 cnconst2 12633 cnpdis 12642 txdis 12677 txdis1cn 12678 fsumcncntop 12956 dvef 13088 bj-omtrans 13531 pwtrufal 13569 |
Copyright terms: Public domain | W3C validator |