| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssd | GIF version | ||
| Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| snssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| snssd | ⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | snssg 3801 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| 4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2200 ⊆ wss 3197 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-sn 3672 |
| This theorem is referenced by: pwntru 4282 ecinxp 6755 xpdom3m 6989 ac6sfi 7056 undifdc 7082 iunfidisj 7109 fidcenumlemr 7118 ssfii 7137 en2other2 7370 pw1m 7405 un0addcl 9398 un0mulcl 9399 fseq1p1m1 10286 fsumge1 11967 fprodsplit1f 12140 bitsinv1 12468 phicl2 12731 ennnfonelemhf1o 12979 imasaddfnlemg 13342 imasaddflemg 13344 0subm 13512 gsumvallem2 13521 trivsubgd 13732 trivsubgsnd 13733 trivnsgd 13749 kerf1ghm 13806 lsssn0 14328 lss0ss 14329 lsptpcl 14352 lspsnvsi 14376 lspun0 14383 mulgrhm2 14568 zndvds 14607 rest0 14847 iscnp4 14886 cnconst2 14901 cnpdis 14910 txdis 14945 txdis1cn 14946 fsumcncntop 15235 dvef 15395 plyf 15405 elplyr 15408 elplyd 15409 ply1term 15411 plyaddlem 15417 plymullem 15418 plycolemc 15426 plycn 15430 dvply2g 15434 perfectlem2 15668 upgr1elem1 15914 bj-omtrans 16277 pwtrufal 16322 |
| Copyright terms: Public domain | W3C validator |