| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssd | GIF version | ||
| Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| snssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| snssd | ⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | snssg 3757 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| 4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2167 ⊆ wss 3157 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-sn 3629 |
| This theorem is referenced by: pwntru 4233 ecinxp 6678 xpdom3m 6902 ac6sfi 6968 undifdc 6994 iunfidisj 7021 fidcenumlemr 7030 ssfii 7049 en2other2 7277 un0addcl 9301 un0mulcl 9302 fseq1p1m1 10188 fsumge1 11645 fprodsplit1f 11818 bitsinv1 12146 phicl2 12409 ennnfonelemhf1o 12657 imasaddfnlemg 13018 imasaddflemg 13020 0subm 13188 gsumvallem2 13197 trivsubgd 13408 trivsubgsnd 13409 trivnsgd 13425 kerf1ghm 13482 lsssn0 14004 lss0ss 14005 lsptpcl 14028 lspsnvsi 14052 lspun0 14059 mulgrhm2 14244 zndvds 14283 rest0 14523 iscnp4 14562 cnconst2 14577 cnpdis 14586 txdis 14621 txdis1cn 14622 fsumcncntop 14911 dvef 15071 plyf 15081 elplyr 15084 elplyd 15085 ply1term 15087 plyaddlem 15093 plymullem 15094 plycolemc 15102 plycn 15106 dvply2g 15110 perfectlem2 15344 bj-omtrans 15710 pwtrufal 15752 |
| Copyright terms: Public domain | W3C validator |