ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcdifsnid GIF version

Theorem dcdifsnid 6580
Description: If we remove a single element from a set with decidable equality then put it back in, we end up with the original set. This strengthens difsnss 3778 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 17-Jun-2022.)
Assertion
Ref Expression
dcdifsnid ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem dcdifsnid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 difsnss 3778 . . 3 (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴)
21adantl 277 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴)
3 simpr 110 . . . . . . 7 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) ∧ 𝑧𝐴) ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵)
4 velsn 3649 . . . . . . 7 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
53, 4sylibr 134 . . . . . 6 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) ∧ 𝑧𝐴) ∧ 𝑧 = 𝐵) → 𝑧 ∈ {𝐵})
6 elun2 3340 . . . . . 6 (𝑧 ∈ {𝐵} → 𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
75, 6syl 14 . . . . 5 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) ∧ 𝑧𝐴) ∧ 𝑧 = 𝐵) → 𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
8 simplr 528 . . . . . . 7 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) ∧ 𝑧𝐴) ∧ ¬ 𝑧 = 𝐵) → 𝑧𝐴)
9 simpr 110 . . . . . . . 8 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) ∧ 𝑧𝐴) ∧ ¬ 𝑧 = 𝐵) → ¬ 𝑧 = 𝐵)
109, 4sylnibr 678 . . . . . . 7 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) ∧ 𝑧𝐴) ∧ ¬ 𝑧 = 𝐵) → ¬ 𝑧 ∈ {𝐵})
118, 10eldifd 3175 . . . . . 6 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) ∧ 𝑧𝐴) ∧ ¬ 𝑧 = 𝐵) → 𝑧 ∈ (𝐴 ∖ {𝐵}))
12 elun1 3339 . . . . . 6 (𝑧 ∈ (𝐴 ∖ {𝐵}) → 𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
1311, 12syl 14 . . . . 5 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) ∧ 𝑧𝐴) ∧ ¬ 𝑧 = 𝐵) → 𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
14 simpll 527 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) ∧ 𝑧𝐴) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
15 simpr 110 . . . . . . . 8 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) ∧ 𝑧𝐴) → 𝑧𝐴)
16 simplr 528 . . . . . . . 8 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) ∧ 𝑧𝐴) → 𝐵𝐴)
17 equequ1 1734 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
1817dcbid 839 . . . . . . . . 9 (𝑥 = 𝑧 → (DECID 𝑥 = 𝑦DECID 𝑧 = 𝑦))
19 eqeq2 2214 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑧 = 𝑦𝑧 = 𝐵))
2019dcbid 839 . . . . . . . . 9 (𝑦 = 𝐵 → (DECID 𝑧 = 𝑦DECID 𝑧 = 𝐵))
2118, 20rspc2v 2889 . . . . . . . 8 ((𝑧𝐴𝐵𝐴) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦DECID 𝑧 = 𝐵))
2215, 16, 21syl2anc 411 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) ∧ 𝑧𝐴) → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦DECID 𝑧 = 𝐵))
2314, 22mpd 13 . . . . . 6 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) ∧ 𝑧𝐴) → DECID 𝑧 = 𝐵)
24 exmiddc 837 . . . . . 6 (DECID 𝑧 = 𝐵 → (𝑧 = 𝐵 ∨ ¬ 𝑧 = 𝐵))
2523, 24syl 14 . . . . 5 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) ∧ 𝑧𝐴) → (𝑧 = 𝐵 ∨ ¬ 𝑧 = 𝐵))
267, 13, 25mpjaodan 799 . . . 4 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) ∧ 𝑧𝐴) → 𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
2726ex 115 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) → (𝑧𝐴𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})))
2827ssrdv 3198 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) → 𝐴 ⊆ ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
292, 28eqssd 3209 1 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1372  wcel 2175  wral 2483  cdif 3162  cun 3163  wss 3165  {csn 3632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638
This theorem is referenced by:  fnsnsplitdc  6581  nndifsnid  6583  fidifsnid  6950  undifdc  7003
  Copyright terms: Public domain W3C validator