| Step | Hyp | Ref
 | Expression | 
| 1 |   | difsnss 3768 | 
. . 3
⊢ (𝐵 ∈ 𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴) | 
| 2 | 1 | adantl 277 | 
. 2
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴) | 
| 3 |   | simpr 110 | 
. . . . . . 7
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵) | 
| 4 |   | velsn 3639 | 
. . . . . . 7
⊢ (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵) | 
| 5 | 3, 4 | sylibr 134 | 
. . . . . 6
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑧 = 𝐵) → 𝑧 ∈ {𝐵}) | 
| 6 |   | elun2 3331 | 
. . . . . 6
⊢ (𝑧 ∈ {𝐵} → 𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})) | 
| 7 | 5, 6 | syl 14 | 
. . . . 5
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑧 = 𝐵) → 𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})) | 
| 8 |   | simplr 528 | 
. . . . . . 7
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ ¬ 𝑧 = 𝐵) → 𝑧 ∈ 𝐴) | 
| 9 |   | simpr 110 | 
. . . . . . . 8
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ ¬ 𝑧 = 𝐵) → ¬ 𝑧 = 𝐵) | 
| 10 | 9, 4 | sylnibr 678 | 
. . . . . . 7
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ ¬ 𝑧 = 𝐵) → ¬ 𝑧 ∈ {𝐵}) | 
| 11 | 8, 10 | eldifd 3167 | 
. . . . . 6
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ ¬ 𝑧 = 𝐵) → 𝑧 ∈ (𝐴 ∖ {𝐵})) | 
| 12 |   | elun1 3330 | 
. . . . . 6
⊢ (𝑧 ∈ (𝐴 ∖ {𝐵}) → 𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})) | 
| 13 | 11, 12 | syl 14 | 
. . . . 5
⊢
((((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ ¬ 𝑧 = 𝐵) → 𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})) | 
| 14 |   | simpll 527 | 
. . . . . . 7
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | 
| 15 |   | simpr 110 | 
. . . . . . . 8
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) | 
| 16 |   | simplr 528 | 
. . . . . . . 8
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → 𝐵 ∈ 𝐴) | 
| 17 |   | equequ1 1726 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑧 = 𝑦)) | 
| 18 | 17 | dcbid 839 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (DECID 𝑥 = 𝑦 ↔ DECID 𝑧 = 𝑦)) | 
| 19 |   | eqeq2 2206 | 
. . . . . . . . . 10
⊢ (𝑦 = 𝐵 → (𝑧 = 𝑦 ↔ 𝑧 = 𝐵)) | 
| 20 | 19 | dcbid 839 | 
. . . . . . . . 9
⊢ (𝑦 = 𝐵 → (DECID 𝑧 = 𝑦 ↔ DECID 𝑧 = 𝐵)) | 
| 21 | 18, 20 | rspc2v 2881 | 
. . . . . . . 8
⊢ ((𝑧 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → DECID 𝑧 = 𝐵)) | 
| 22 | 15, 16, 21 | syl2anc 411 | 
. . . . . . 7
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → DECID 𝑧 = 𝐵)) | 
| 23 | 14, 22 | mpd 13 | 
. . . . . 6
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → DECID 𝑧 = 𝐵) | 
| 24 |   | exmiddc 837 | 
. . . . . 6
⊢
(DECID 𝑧 = 𝐵 → (𝑧 = 𝐵 ∨ ¬ 𝑧 = 𝐵)) | 
| 25 | 23, 24 | syl 14 | 
. . . . 5
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → (𝑧 = 𝐵 ∨ ¬ 𝑧 = 𝐵)) | 
| 26 | 7, 13, 25 | mpjaodan 799 | 
. . . 4
⊢
(((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵})) | 
| 27 | 26 | ex 115 | 
. . 3
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) → (𝑧 ∈ 𝐴 → 𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}))) | 
| 28 | 27 | ssrdv 3189 | 
. 2
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) → 𝐴 ⊆ ((𝐴 ∖ {𝐵}) ∪ {𝐵})) | 
| 29 | 2, 28 | eqssd 3200 | 
1
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ 𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |