| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eceq2d | GIF version | ||
| Description: Equality theorem for the 𝐴-coset and 𝐵-coset of 𝐶, deduction version. (Contributed by Peter Mazsa, 23-Apr-2021.) |
| Ref | Expression |
|---|---|
| eceq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| eceq2d | ⊢ (𝜑 → [𝐶]𝐴 = [𝐶]𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eceq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eceq2 6669 | . 2 ⊢ (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → [𝐶]𝐴 = [𝐶]𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 [cec 6630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3643 df-pr 3644 df-op 3646 df-br 4051 df-opab 4113 df-cnv 4690 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-ec 6634 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |