ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elecg GIF version

Theorem elecg 6718
Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
elecg ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))

Proof of Theorem elecg
StepHypRef Expression
1 elimasng 5095 . . 3 ((𝐵𝑊𝐴𝑉) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))
21ancoms 268 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))
3 df-ec 6680 . . 3 [𝐵]𝑅 = (𝑅 “ {𝐵})
43eleq2i 2296 . 2 (𝐴 ∈ [𝐵]𝑅𝐴 ∈ (𝑅 “ {𝐵}))
5 df-br 4083 . 2 (𝐵𝑅𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)
62, 4, 53bitr4g 223 1 ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2200  {csn 3666  cop 3669   class class class wbr 4082  cima 4721  [cec 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-ec 6680
This theorem is referenced by:  elec  6719  relelec  6720  ecdmn0m  6722  erth  6724  ecidg  6744  qsel  6757  xmetec  15105  blpnfctr  15107  xmetresbl  15108
  Copyright terms: Public domain W3C validator