ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iftrueb01 GIF version

Theorem iftrueb01 7354
Description: Using an if expression to represent a truth value by or 1o. Unlike some theorems using if, 𝜑 does not need to be decidable. (Contributed by Jim Kingdon, 9-Jan-2026.)
Assertion
Ref Expression
iftrueb01 (if(𝜑, 1o, ∅) = 1o𝜑)

Proof of Theorem iftrueb01
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0lt1o 6539 . . . 4 ∅ ∈ 1o
2 elex2 2790 . . . 4 (∅ ∈ 1o → ∃𝑥 𝑥 ∈ 1o)
31, 2ax-mp 5 . . 3 𝑥 𝑥 ∈ 1o
4 eleq2 2270 . . . . . 6 (if(𝜑, 1o, ∅) = 1o → (𝑥 ∈ if(𝜑, 1o, ∅) ↔ 𝑥 ∈ 1o))
5 elif 3587 . . . . . . 7 (𝑥 ∈ if(𝜑, 1o, ∅) ↔ ((𝜑𝑥 ∈ 1o) ∨ (¬ 𝜑𝑥 ∈ ∅)))
6 noel 3468 . . . . . . . . 9 ¬ 𝑥 ∈ ∅
76intnan 931 . . . . . . . 8 ¬ (¬ 𝜑𝑥 ∈ ∅)
87biorfi 748 . . . . . . 7 ((𝜑𝑥 ∈ 1o) ↔ ((𝜑𝑥 ∈ 1o) ∨ (¬ 𝜑𝑥 ∈ ∅)))
95, 8bitr4i 187 . . . . . 6 (𝑥 ∈ if(𝜑, 1o, ∅) ↔ (𝜑𝑥 ∈ 1o))
104, 9bitr3di 195 . . . . 5 (if(𝜑, 1o, ∅) = 1o → (𝑥 ∈ 1o ↔ (𝜑𝑥 ∈ 1o)))
11 pm4.71r 390 . . . . 5 ((𝑥 ∈ 1o𝜑) ↔ (𝑥 ∈ 1o ↔ (𝜑𝑥 ∈ 1o)))
1210, 11sylibr 134 . . . 4 (if(𝜑, 1o, ∅) = 1o → (𝑥 ∈ 1o𝜑))
1312exlimdv 1843 . . 3 (if(𝜑, 1o, ∅) = 1o → (∃𝑥 𝑥 ∈ 1o𝜑))
143, 13mpi 15 . 2 (if(𝜑, 1o, ∅) = 1o𝜑)
15 iftrue 3580 . 2 (𝜑 → if(𝜑, 1o, ∅) = 1o)
1614, 15impbii 126 1 (if(𝜑, 1o, ∅) = 1o𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wex 1516  wcel 2177  c0 3464  ifcif 3575  1oc1o 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-nul 4178
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-un 3174  df-nul 3465  df-if 3576  df-sn 3644  df-suc 4426  df-1o 6515
This theorem is referenced by:  pw1map  16073
  Copyright terms: Public domain W3C validator