| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftrueb01 | GIF version | ||
| Description: Using an if expression to represent a truth value by ∅ or 1o. Unlike some theorems using if, 𝜑 does not need to be decidable. (Contributed by Jim Kingdon, 9-Jan-2026.) |
| Ref | Expression |
|---|---|
| iftrueb01 | ⊢ (if(𝜑, 1o, ∅) = 1o ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt1o 6584 | . . . 4 ⊢ ∅ ∈ 1o | |
| 2 | elex2 2816 | . . . 4 ⊢ (∅ ∈ 1o → ∃𝑥 𝑥 ∈ 1o) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ∃𝑥 𝑥 ∈ 1o |
| 4 | eleq2 2293 | . . . . . 6 ⊢ (if(𝜑, 1o, ∅) = 1o → (𝑥 ∈ if(𝜑, 1o, ∅) ↔ 𝑥 ∈ 1o)) | |
| 5 | elif 3614 | . . . . . . 7 ⊢ (𝑥 ∈ if(𝜑, 1o, ∅) ↔ ((𝜑 ∧ 𝑥 ∈ 1o) ∨ (¬ 𝜑 ∧ 𝑥 ∈ ∅))) | |
| 6 | noel 3495 | . . . . . . . . 9 ⊢ ¬ 𝑥 ∈ ∅ | |
| 7 | 6 | intnan 934 | . . . . . . . 8 ⊢ ¬ (¬ 𝜑 ∧ 𝑥 ∈ ∅) |
| 8 | 7 | biorfi 751 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 1o) ↔ ((𝜑 ∧ 𝑥 ∈ 1o) ∨ (¬ 𝜑 ∧ 𝑥 ∈ ∅))) |
| 9 | 5, 8 | bitr4i 187 | . . . . . 6 ⊢ (𝑥 ∈ if(𝜑, 1o, ∅) ↔ (𝜑 ∧ 𝑥 ∈ 1o)) |
| 10 | 4, 9 | bitr3di 195 | . . . . 5 ⊢ (if(𝜑, 1o, ∅) = 1o → (𝑥 ∈ 1o ↔ (𝜑 ∧ 𝑥 ∈ 1o))) |
| 11 | pm4.71r 390 | . . . . 5 ⊢ ((𝑥 ∈ 1o → 𝜑) ↔ (𝑥 ∈ 1o ↔ (𝜑 ∧ 𝑥 ∈ 1o))) | |
| 12 | 10, 11 | sylibr 134 | . . . 4 ⊢ (if(𝜑, 1o, ∅) = 1o → (𝑥 ∈ 1o → 𝜑)) |
| 13 | 12 | exlimdv 1865 | . . 3 ⊢ (if(𝜑, 1o, ∅) = 1o → (∃𝑥 𝑥 ∈ 1o → 𝜑)) |
| 14 | 3, 13 | mpi 15 | . 2 ⊢ (if(𝜑, 1o, ∅) = 1o → 𝜑) |
| 15 | iftrue 3607 | . 2 ⊢ (𝜑 → if(𝜑, 1o, ∅) = 1o) | |
| 16 | 14, 15 | impbii 126 | 1 ⊢ (if(𝜑, 1o, ∅) = 1o ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∅c0 3491 ifcif 3602 1oc1o 6553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4209 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-if 3603 df-sn 3672 df-suc 4461 df-1o 6560 |
| This theorem is referenced by: pw1map 16320 |
| Copyright terms: Public domain | W3C validator |