ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iftrueb01 GIF version

Theorem iftrueb01 7404
Description: Using an if expression to represent a truth value by or 1o. Unlike some theorems using if, 𝜑 does not need to be decidable. (Contributed by Jim Kingdon, 9-Jan-2026.)
Assertion
Ref Expression
iftrueb01 (if(𝜑, 1o, ∅) = 1o𝜑)

Proof of Theorem iftrueb01
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0lt1o 6584 . . . 4 ∅ ∈ 1o
2 elex2 2816 . . . 4 (∅ ∈ 1o → ∃𝑥 𝑥 ∈ 1o)
31, 2ax-mp 5 . . 3 𝑥 𝑥 ∈ 1o
4 eleq2 2293 . . . . . 6 (if(𝜑, 1o, ∅) = 1o → (𝑥 ∈ if(𝜑, 1o, ∅) ↔ 𝑥 ∈ 1o))
5 elif 3614 . . . . . . 7 (𝑥 ∈ if(𝜑, 1o, ∅) ↔ ((𝜑𝑥 ∈ 1o) ∨ (¬ 𝜑𝑥 ∈ ∅)))
6 noel 3495 . . . . . . . . 9 ¬ 𝑥 ∈ ∅
76intnan 934 . . . . . . . 8 ¬ (¬ 𝜑𝑥 ∈ ∅)
87biorfi 751 . . . . . . 7 ((𝜑𝑥 ∈ 1o) ↔ ((𝜑𝑥 ∈ 1o) ∨ (¬ 𝜑𝑥 ∈ ∅)))
95, 8bitr4i 187 . . . . . 6 (𝑥 ∈ if(𝜑, 1o, ∅) ↔ (𝜑𝑥 ∈ 1o))
104, 9bitr3di 195 . . . . 5 (if(𝜑, 1o, ∅) = 1o → (𝑥 ∈ 1o ↔ (𝜑𝑥 ∈ 1o)))
11 pm4.71r 390 . . . . 5 ((𝑥 ∈ 1o𝜑) ↔ (𝑥 ∈ 1o ↔ (𝜑𝑥 ∈ 1o)))
1210, 11sylibr 134 . . . 4 (if(𝜑, 1o, ∅) = 1o → (𝑥 ∈ 1o𝜑))
1312exlimdv 1865 . . 3 (if(𝜑, 1o, ∅) = 1o → (∃𝑥 𝑥 ∈ 1o𝜑))
143, 13mpi 15 . 2 (if(𝜑, 1o, ∅) = 1o𝜑)
15 iftrue 3607 . 2 (𝜑 → if(𝜑, 1o, ∅) = 1o)
1614, 15impbii 126 1 (if(𝜑, 1o, ∅) = 1o𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wex 1538  wcel 2200  c0 3491  ifcif 3602  1oc1o 6553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-nul 4209
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-if 3603  df-sn 3672  df-suc 4461  df-1o 6560
This theorem is referenced by:  pw1map  16320
  Copyright terms: Public domain W3C validator