| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlemisucfn | GIF version | ||
| Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrlemi1 6441. (Contributed by Jim Kingdon, 2-Jul-2019.) |
| Ref | Expression |
|---|---|
| tfrlemisucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| tfrlemisucfn.2 | ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
| tfrlemisucfn.3 | ⊢ (𝜑 → 𝑧 ∈ On) |
| tfrlemisucfn.4 | ⊢ (𝜑 → 𝑔 Fn 𝑧) |
| tfrlemisucfn.5 | ⊢ (𝜑 → 𝑔 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| tfrlemisucfn | ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2779 | . . 3 ⊢ 𝑧 ∈ V | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝑧 ∈ V) |
| 3 | tfrlemisucfn.2 | . . . 4 ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) | |
| 4 | 3 | tfrlem3-2d 6421 | . . 3 ⊢ (𝜑 → (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
| 5 | 4 | simprd 114 | . 2 ⊢ (𝜑 → (𝐹‘𝑔) ∈ V) |
| 6 | tfrlemisucfn.4 | . 2 ⊢ (𝜑 → 𝑔 Fn 𝑧) | |
| 7 | eqid 2207 | . 2 ⊢ (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) | |
| 8 | df-suc 4436 | . 2 ⊢ suc 𝑧 = (𝑧 ∪ {𝑧}) | |
| 9 | elirrv 4614 | . . 3 ⊢ ¬ 𝑧 ∈ 𝑧 | |
| 10 | 9 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝑧 ∈ 𝑧) |
| 11 | 2, 5, 6, 7, 8, 10 | fnunsn 5402 | 1 ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1371 = wceq 1373 ∈ wcel 2178 {cab 2193 ∀wral 2486 ∃wrex 2487 Vcvv 2776 ∪ cun 3172 {csn 3643 〈cop 3646 Oncon0 4428 suc csuc 4430 ↾ cres 4695 Fun wfun 5284 Fn wfn 5285 ‘cfv 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 |
| This theorem is referenced by: tfrlemisucaccv 6434 tfrlemibfn 6437 |
| Copyright terms: Public domain | W3C validator |