ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemisucfn GIF version

Theorem tfrlemisucfn 6328
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrlemi1 6336. (Contributed by Jim Kingdon, 2-Jul-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
tfrlemisucfn.3 (𝜑𝑧 ∈ On)
tfrlemisucfn.4 (𝜑𝑔 Fn 𝑧)
tfrlemisucfn.5 (𝜑𝑔𝐴)
Assertion
Ref Expression
tfrlemisucfn (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧)
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐴   𝑓,𝐹,𝑔,𝑥,𝑦,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑓,𝑔)

Proof of Theorem tfrlemisucfn
StepHypRef Expression
1 vex 2742 . . 3 𝑧 ∈ V
21a1i 9 . 2 (𝜑𝑧 ∈ V)
3 tfrlemisucfn.2 . . . 4 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
43tfrlem3-2d 6316 . . 3 (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
54simprd 114 . 2 (𝜑 → (𝐹𝑔) ∈ V)
6 tfrlemisucfn.4 . 2 (𝜑𝑔 Fn 𝑧)
7 eqid 2177 . 2 (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})
8 df-suc 4373 . 2 suc 𝑧 = (𝑧 ∪ {𝑧})
9 elirrv 4549 . . 3 ¬ 𝑧𝑧
109a1i 9 . 2 (𝜑 → ¬ 𝑧𝑧)
112, 5, 6, 7, 8, 10fnunsn 5325 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1351   = wceq 1353  wcel 2148  {cab 2163  wral 2455  wrex 2456  Vcvv 2739  cun 3129  {csn 3594  cop 3597  Oncon0 4365  suc csuc 4367  cres 4630  Fun wfun 5212   Fn wfn 5213  cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226
This theorem is referenced by:  tfrlemisucaccv  6329  tfrlemibfn  6332
  Copyright terms: Public domain W3C validator