| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlemisucfn | GIF version | ||
| Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrlemi1 6417. (Contributed by Jim Kingdon, 2-Jul-2019.) |
| Ref | Expression |
|---|---|
| tfrlemisucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| tfrlemisucfn.2 | ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
| tfrlemisucfn.3 | ⊢ (𝜑 → 𝑧 ∈ On) |
| tfrlemisucfn.4 | ⊢ (𝜑 → 𝑔 Fn 𝑧) |
| tfrlemisucfn.5 | ⊢ (𝜑 → 𝑔 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| tfrlemisucfn | ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2774 | . . 3 ⊢ 𝑧 ∈ V | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝑧 ∈ V) |
| 3 | tfrlemisucfn.2 | . . . 4 ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) | |
| 4 | 3 | tfrlem3-2d 6397 | . . 3 ⊢ (𝜑 → (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
| 5 | 4 | simprd 114 | . 2 ⊢ (𝜑 → (𝐹‘𝑔) ∈ V) |
| 6 | tfrlemisucfn.4 | . 2 ⊢ (𝜑 → 𝑔 Fn 𝑧) | |
| 7 | eqid 2204 | . 2 ⊢ (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) | |
| 8 | df-suc 4417 | . 2 ⊢ suc 𝑧 = (𝑧 ∪ {𝑧}) | |
| 9 | elirrv 4595 | . . 3 ⊢ ¬ 𝑧 ∈ 𝑧 | |
| 10 | 9 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝑧 ∈ 𝑧) |
| 11 | 2, 5, 6, 7, 8, 10 | fnunsn 5382 | 1 ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1370 = wceq 1372 ∈ wcel 2175 {cab 2190 ∀wral 2483 ∃wrex 2484 Vcvv 2771 ∪ cun 3163 {csn 3632 〈cop 3635 Oncon0 4409 suc csuc 4411 ↾ cres 4676 Fun wfun 5264 Fn wfn 5265 ‘cfv 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4584 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 |
| This theorem is referenced by: tfrlemisucaccv 6410 tfrlemibfn 6413 |
| Copyright terms: Public domain | W3C validator |