ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemisucfn GIF version

Theorem tfrlemisucfn 6303
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrlemi1 6311. (Contributed by Jim Kingdon, 2-Jul-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
tfrlemisucfn.3 (𝜑𝑧 ∈ On)
tfrlemisucfn.4 (𝜑𝑔 Fn 𝑧)
tfrlemisucfn.5 (𝜑𝑔𝐴)
Assertion
Ref Expression
tfrlemisucfn (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧)
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐴   𝑓,𝐹,𝑔,𝑥,𝑦,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑓,𝑔)

Proof of Theorem tfrlemisucfn
StepHypRef Expression
1 vex 2733 . . 3 𝑧 ∈ V
21a1i 9 . 2 (𝜑𝑧 ∈ V)
3 tfrlemisucfn.2 . . . 4 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
43tfrlem3-2d 6291 . . 3 (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
54simprd 113 . 2 (𝜑 → (𝐹𝑔) ∈ V)
6 tfrlemisucfn.4 . 2 (𝜑𝑔 Fn 𝑧)
7 eqid 2170 . 2 (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})
8 df-suc 4356 . 2 suc 𝑧 = (𝑧 ∪ {𝑧})
9 elirrv 4532 . . 3 ¬ 𝑧𝑧
109a1i 9 . 2 (𝜑 → ¬ 𝑧𝑧)
112, 5, 6, 7, 8, 10fnunsn 5305 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wal 1346   = wceq 1348  wcel 2141  {cab 2156  wral 2448  wrex 2449  Vcvv 2730  cun 3119  {csn 3583  cop 3586  Oncon0 4348  suc csuc 4350  cres 4613  Fun wfun 5192   Fn wfn 5193  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206
This theorem is referenced by:  tfrlemisucaccv  6304  tfrlemibfn  6307
  Copyright terms: Public domain W3C validator