Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlemisucfn | GIF version |
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrlemi1 6300. (Contributed by Jim Kingdon, 2-Jul-2019.) |
Ref | Expression |
---|---|
tfrlemisucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
tfrlemisucfn.2 | ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
tfrlemisucfn.3 | ⊢ (𝜑 → 𝑧 ∈ On) |
tfrlemisucfn.4 | ⊢ (𝜑 → 𝑔 Fn 𝑧) |
tfrlemisucfn.5 | ⊢ (𝜑 → 𝑔 ∈ 𝐴) |
Ref | Expression |
---|---|
tfrlemisucfn | ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . 3 ⊢ 𝑧 ∈ V | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝑧 ∈ V) |
3 | tfrlemisucfn.2 | . . . 4 ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) | |
4 | 3 | tfrlem3-2d 6280 | . . 3 ⊢ (𝜑 → (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
5 | 4 | simprd 113 | . 2 ⊢ (𝜑 → (𝐹‘𝑔) ∈ V) |
6 | tfrlemisucfn.4 | . 2 ⊢ (𝜑 → 𝑔 Fn 𝑧) | |
7 | eqid 2165 | . 2 ⊢ (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) | |
8 | df-suc 4349 | . 2 ⊢ suc 𝑧 = (𝑧 ∪ {𝑧}) | |
9 | elirrv 4525 | . . 3 ⊢ ¬ 𝑧 ∈ 𝑧 | |
10 | 9 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝑧 ∈ 𝑧) |
11 | 2, 5, 6, 7, 8, 10 | fnunsn 5295 | 1 ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∀wal 1341 = wceq 1343 ∈ wcel 2136 {cab 2151 ∀wral 2444 ∃wrex 2445 Vcvv 2726 ∪ cun 3114 {csn 3576 〈cop 3579 Oncon0 4341 suc csuc 4343 ↾ cres 4606 Fun wfun 5182 Fn wfn 5183 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: tfrlemisucaccv 6293 tfrlemibfn 6296 |
Copyright terms: Public domain | W3C validator |