| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlemisucfn | GIF version | ||
| Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrlemi1 6476. (Contributed by Jim Kingdon, 2-Jul-2019.) |
| Ref | Expression |
|---|---|
| tfrlemisucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| tfrlemisucfn.2 | ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
| tfrlemisucfn.3 | ⊢ (𝜑 → 𝑧 ∈ On) |
| tfrlemisucfn.4 | ⊢ (𝜑 → 𝑔 Fn 𝑧) |
| tfrlemisucfn.5 | ⊢ (𝜑 → 𝑔 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| tfrlemisucfn | ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . 3 ⊢ 𝑧 ∈ V | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝑧 ∈ V) |
| 3 | tfrlemisucfn.2 | . . . 4 ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) | |
| 4 | 3 | tfrlem3-2d 6456 | . . 3 ⊢ (𝜑 → (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
| 5 | 4 | simprd 114 | . 2 ⊢ (𝜑 → (𝐹‘𝑔) ∈ V) |
| 6 | tfrlemisucfn.4 | . 2 ⊢ (𝜑 → 𝑔 Fn 𝑧) | |
| 7 | eqid 2229 | . 2 ⊢ (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) | |
| 8 | df-suc 4461 | . 2 ⊢ suc 𝑧 = (𝑧 ∪ {𝑧}) | |
| 9 | elirrv 4639 | . . 3 ⊢ ¬ 𝑧 ∈ 𝑧 | |
| 10 | 9 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝑧 ∈ 𝑧) |
| 11 | 2, 5, 6, 7, 8, 10 | fnunsn 5429 | 1 ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1393 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 ∃wrex 2509 Vcvv 2799 ∪ cun 3195 {csn 3666 〈cop 3669 Oncon0 4453 suc csuc 4455 ↾ cres 4720 Fun wfun 5311 Fn wfn 5312 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 |
| This theorem is referenced by: tfrlemisucaccv 6469 tfrlemibfn 6472 |
| Copyright terms: Public domain | W3C validator |