Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemisucfn GIF version

Theorem tfrlemisucfn 6214
 Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrlemi1 6222. (Contributed by Jim Kingdon, 2-Jul-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
tfrlemisucfn.3 (𝜑𝑧 ∈ On)
tfrlemisucfn.4 (𝜑𝑔 Fn 𝑧)
tfrlemisucfn.5 (𝜑𝑔𝐴)
Assertion
Ref Expression
tfrlemisucfn (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧)
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐴   𝑓,𝐹,𝑔,𝑥,𝑦,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑓,𝑔)

Proof of Theorem tfrlemisucfn
StepHypRef Expression
1 vex 2684 . . 3 𝑧 ∈ V
21a1i 9 . 2 (𝜑𝑧 ∈ V)
3 tfrlemisucfn.2 . . . 4 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
43tfrlem3-2d 6202 . . 3 (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
54simprd 113 . 2 (𝜑 → (𝐹𝑔) ∈ V)
6 tfrlemisucfn.4 . 2 (𝜑𝑔 Fn 𝑧)
7 eqid 2137 . 2 (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})
8 df-suc 4288 . 2 suc 𝑧 = (𝑧 ∪ {𝑧})
9 elirrv 4458 . . 3 ¬ 𝑧𝑧
109a1i 9 . 2 (𝜑 → ¬ 𝑧𝑧)
112, 5, 6, 7, 8, 10fnunsn 5225 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103  ∀wal 1329   = wceq 1331   ∈ wcel 1480  {cab 2123  ∀wral 2414  ∃wrex 2415  Vcvv 2681   ∪ cun 3064  {csn 3522  ⟨cop 3525  Oncon0 4280  suc csuc 4282   ↾ cres 4536  Fun wfun 5112   Fn wfn 5113  ‘cfv 5118 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-setind 4447 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-suc 4288  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fn 5121  df-fv 5126 This theorem is referenced by:  tfrlemisucaccv  6215  tfrlemibfn  6218
 Copyright terms: Public domain W3C validator