![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfrlemisucfn | GIF version |
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrlemi1 6387. (Contributed by Jim Kingdon, 2-Jul-2019.) |
Ref | Expression |
---|---|
tfrlemisucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
tfrlemisucfn.2 | ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
tfrlemisucfn.3 | ⊢ (𝜑 → 𝑧 ∈ On) |
tfrlemisucfn.4 | ⊢ (𝜑 → 𝑔 Fn 𝑧) |
tfrlemisucfn.5 | ⊢ (𝜑 → 𝑔 ∈ 𝐴) |
Ref | Expression |
---|---|
tfrlemisucfn | ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . . 3 ⊢ 𝑧 ∈ V | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝑧 ∈ V) |
3 | tfrlemisucfn.2 | . . . 4 ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) | |
4 | 3 | tfrlem3-2d 6367 | . . 3 ⊢ (𝜑 → (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
5 | 4 | simprd 114 | . 2 ⊢ (𝜑 → (𝐹‘𝑔) ∈ V) |
6 | tfrlemisucfn.4 | . 2 ⊢ (𝜑 → 𝑔 Fn 𝑧) | |
7 | eqid 2193 | . 2 ⊢ (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) | |
8 | df-suc 4403 | . 2 ⊢ suc 𝑧 = (𝑧 ∪ {𝑧}) | |
9 | elirrv 4581 | . . 3 ⊢ ¬ 𝑧 ∈ 𝑧 | |
10 | 9 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝑧 ∈ 𝑧) |
11 | 2, 5, 6, 7, 8, 10 | fnunsn 5362 | 1 ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∈ wcel 2164 {cab 2179 ∀wral 2472 ∃wrex 2473 Vcvv 2760 ∪ cun 3152 {csn 3619 〈cop 3622 Oncon0 4395 suc csuc 4397 ↾ cres 4662 Fun wfun 5249 Fn wfn 5250 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-suc 4403 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 |
This theorem is referenced by: tfrlemisucaccv 6380 tfrlemibfn 6383 |
Copyright terms: Public domain | W3C validator |