| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 1pi | GIF version | ||
| Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) | 
| Ref | Expression | 
|---|---|
| 1pi | ⊢ 1o ∈ N | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1onn 6578 | . 2 ⊢ 1o ∈ ω | |
| 2 | 1n0 6490 | . 2 ⊢ 1o ≠ ∅ | |
| 3 | elni 7375 | . 2 ⊢ (1o ∈ N ↔ (1o ∈ ω ∧ 1o ≠ ∅)) | |
| 4 | 1, 2, 3 | mpbir2an 944 | 1 ⊢ 1o ∈ N | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 ≠ wne 2367 ∅c0 3450 ωcom 4626 1oc1o 6467 Ncnpi 7339 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-iom 4627 df-1o 6474 df-ni 7371 | 
| This theorem is referenced by: mulidpi 7385 1lt2pi 7407 nlt1pig 7408 indpi 7409 1nq 7433 1qec 7455 mulidnq 7456 1lt2nq 7473 archnqq 7484 prarloclemarch 7485 prarloclemarch2 7486 nnnq 7489 ltnnnq 7490 nq0m0r 7523 nq0a0 7524 addpinq1 7531 nq02m 7532 prarloclemlt 7560 prarloclemlo 7561 prarloclemn 7566 prarloclemcalc 7569 nqprm 7609 caucvgprlemm 7735 caucvgprprlemml 7761 caucvgprprlemmu 7762 caucvgsrlemasr 7857 caucvgsr 7869 nntopi 7961 | 
| Copyright terms: Public domain | W3C validator |