| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1pi | GIF version | ||
| Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1pi | ⊢ 1o ∈ N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6656 | . 2 ⊢ 1o ∈ ω | |
| 2 | 1n0 6568 | . 2 ⊢ 1o ≠ ∅ | |
| 3 | elni 7483 | . 2 ⊢ (1o ∈ N ↔ (1o ∈ ω ∧ 1o ≠ ∅)) | |
| 4 | 1, 2, 3 | mpbir2an 948 | 1 ⊢ 1o ∈ N |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ≠ wne 2400 ∅c0 3491 ωcom 4679 1oc1o 6545 Ncnpi 7447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-suc 4459 df-iom 4680 df-1o 6552 df-ni 7479 |
| This theorem is referenced by: mulidpi 7493 1lt2pi 7515 nlt1pig 7516 indpi 7517 1nq 7541 1qec 7563 mulidnq 7564 1lt2nq 7581 archnqq 7592 prarloclemarch 7593 prarloclemarch2 7594 nnnq 7597 ltnnnq 7598 nq0m0r 7631 nq0a0 7632 addpinq1 7639 nq02m 7640 prarloclemlt 7668 prarloclemlo 7669 prarloclemn 7674 prarloclemcalc 7677 nqprm 7717 caucvgprlemm 7843 caucvgprprlemml 7869 caucvgprprlemmu 7870 caucvgsrlemasr 7965 caucvgsr 7977 nntopi 8069 |
| Copyright terms: Public domain | W3C validator |