| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1pi | GIF version | ||
| Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1pi | ⊢ 1o ∈ N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6587 | . 2 ⊢ 1o ∈ ω | |
| 2 | 1n0 6499 | . 2 ⊢ 1o ≠ ∅ | |
| 3 | elni 7392 | . 2 ⊢ (1o ∈ N ↔ (1o ∈ ω ∧ 1o ≠ ∅)) | |
| 4 | 1, 2, 3 | mpbir2an 944 | 1 ⊢ 1o ∈ N |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ≠ wne 2367 ∅c0 3451 ωcom 4627 1oc1o 6476 Ncnpi 7356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-suc 4407 df-iom 4628 df-1o 6483 df-ni 7388 |
| This theorem is referenced by: mulidpi 7402 1lt2pi 7424 nlt1pig 7425 indpi 7426 1nq 7450 1qec 7472 mulidnq 7473 1lt2nq 7490 archnqq 7501 prarloclemarch 7502 prarloclemarch2 7503 nnnq 7506 ltnnnq 7507 nq0m0r 7540 nq0a0 7541 addpinq1 7548 nq02m 7549 prarloclemlt 7577 prarloclemlo 7578 prarloclemn 7583 prarloclemcalc 7586 nqprm 7626 caucvgprlemm 7752 caucvgprprlemml 7778 caucvgprprlemmu 7779 caucvgsrlemasr 7874 caucvgsr 7886 nntopi 7978 |
| Copyright terms: Public domain | W3C validator |