Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1pi | GIF version |
Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1pi | ⊢ 1o ∈ N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6499 | . 2 ⊢ 1o ∈ ω | |
2 | 1n0 6411 | . 2 ⊢ 1o ≠ ∅ | |
3 | elni 7270 | . 2 ⊢ (1o ∈ N ↔ (1o ∈ ω ∧ 1o ≠ ∅)) | |
4 | 1, 2, 3 | mpbir2an 937 | 1 ⊢ 1o ∈ N |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 ≠ wne 2340 ∅c0 3414 ωcom 4574 1oc1o 6388 Ncnpi 7234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 df-1o 6395 df-ni 7266 |
This theorem is referenced by: mulidpi 7280 1lt2pi 7302 nlt1pig 7303 indpi 7304 1nq 7328 1qec 7350 mulidnq 7351 1lt2nq 7368 archnqq 7379 prarloclemarch 7380 prarloclemarch2 7381 nnnq 7384 ltnnnq 7385 nq0m0r 7418 nq0a0 7419 addpinq1 7426 nq02m 7427 prarloclemlt 7455 prarloclemlo 7456 prarloclemn 7461 prarloclemcalc 7464 nqprm 7504 caucvgprlemm 7630 caucvgprprlemml 7656 caucvgprprlemmu 7657 caucvgsrlemasr 7752 caucvgsr 7764 nntopi 7856 |
Copyright terms: Public domain | W3C validator |