Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1pi | GIF version |
Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1pi | ⊢ 1o ∈ N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6488 | . 2 ⊢ 1o ∈ ω | |
2 | 1n0 6400 | . 2 ⊢ 1o ≠ ∅ | |
3 | elni 7249 | . 2 ⊢ (1o ∈ N ↔ (1o ∈ ω ∧ 1o ≠ ∅)) | |
4 | 1, 2, 3 | mpbir2an 932 | 1 ⊢ 1o ∈ N |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ≠ wne 2336 ∅c0 3409 ωcom 4567 1oc1o 6377 Ncnpi 7213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-1o 6384 df-ni 7245 |
This theorem is referenced by: mulidpi 7259 1lt2pi 7281 nlt1pig 7282 indpi 7283 1nq 7307 1qec 7329 mulidnq 7330 1lt2nq 7347 archnqq 7358 prarloclemarch 7359 prarloclemarch2 7360 nnnq 7363 ltnnnq 7364 nq0m0r 7397 nq0a0 7398 addpinq1 7405 nq02m 7406 prarloclemlt 7434 prarloclemlo 7435 prarloclemn 7440 prarloclemcalc 7443 nqprm 7483 caucvgprlemm 7609 caucvgprprlemml 7635 caucvgprprlemmu 7636 caucvgsrlemasr 7731 caucvgsr 7743 nntopi 7835 |
Copyright terms: Public domain | W3C validator |