Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1pi | GIF version |
Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1pi | ⊢ 1o ∈ N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6496 | . 2 ⊢ 1o ∈ ω | |
2 | 1n0 6408 | . 2 ⊢ 1o ≠ ∅ | |
3 | elni 7257 | . 2 ⊢ (1o ∈ N ↔ (1o ∈ ω ∧ 1o ≠ ∅)) | |
4 | 1, 2, 3 | mpbir2an 937 | 1 ⊢ 1o ∈ N |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 ≠ wne 2340 ∅c0 3414 ωcom 4572 1oc1o 6385 Ncnpi 7221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-uni 3795 df-int 3830 df-suc 4354 df-iom 4573 df-1o 6392 df-ni 7253 |
This theorem is referenced by: mulidpi 7267 1lt2pi 7289 nlt1pig 7290 indpi 7291 1nq 7315 1qec 7337 mulidnq 7338 1lt2nq 7355 archnqq 7366 prarloclemarch 7367 prarloclemarch2 7368 nnnq 7371 ltnnnq 7372 nq0m0r 7405 nq0a0 7406 addpinq1 7413 nq02m 7414 prarloclemlt 7442 prarloclemlo 7443 prarloclemn 7448 prarloclemcalc 7451 nqprm 7491 caucvgprlemm 7617 caucvgprprlemml 7643 caucvgprprlemmu 7644 caucvgsrlemasr 7739 caucvgsr 7751 nntopi 7843 |
Copyright terms: Public domain | W3C validator |