| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1pi | GIF version | ||
| Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1pi | ⊢ 1o ∈ N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6613 | . 2 ⊢ 1o ∈ ω | |
| 2 | 1n0 6525 | . 2 ⊢ 1o ≠ ∅ | |
| 3 | elni 7428 | . 2 ⊢ (1o ∈ N ↔ (1o ∈ ω ∧ 1o ≠ ∅)) | |
| 4 | 1, 2, 3 | mpbir2an 945 | 1 ⊢ 1o ∈ N |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ≠ wne 2377 ∅c0 3461 ωcom 4642 1oc1o 6502 Ncnpi 7392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-uni 3853 df-int 3888 df-suc 4422 df-iom 4643 df-1o 6509 df-ni 7424 |
| This theorem is referenced by: mulidpi 7438 1lt2pi 7460 nlt1pig 7461 indpi 7462 1nq 7486 1qec 7508 mulidnq 7509 1lt2nq 7526 archnqq 7537 prarloclemarch 7538 prarloclemarch2 7539 nnnq 7542 ltnnnq 7543 nq0m0r 7576 nq0a0 7577 addpinq1 7584 nq02m 7585 prarloclemlt 7613 prarloclemlo 7614 prarloclemn 7619 prarloclemcalc 7622 nqprm 7662 caucvgprlemm 7788 caucvgprprlemml 7814 caucvgprprlemmu 7815 caucvgsrlemasr 7910 caucvgsr 7922 nntopi 8014 |
| Copyright terms: Public domain | W3C validator |