| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1pi | GIF version | ||
| Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1pi | ⊢ 1o ∈ N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6674 | . 2 ⊢ 1o ∈ ω | |
| 2 | 1n0 6586 | . 2 ⊢ 1o ≠ ∅ | |
| 3 | elni 7503 | . 2 ⊢ (1o ∈ N ↔ (1o ∈ ω ∧ 1o ≠ ∅)) | |
| 4 | 1, 2, 3 | mpbir2an 948 | 1 ⊢ 1o ∈ N |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ≠ wne 2400 ∅c0 3491 ωcom 4682 1oc1o 6561 Ncnpi 7467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 df-1o 6568 df-ni 7499 |
| This theorem is referenced by: mulidpi 7513 1lt2pi 7535 nlt1pig 7536 indpi 7537 1nq 7561 1qec 7583 mulidnq 7584 1lt2nq 7601 archnqq 7612 prarloclemarch 7613 prarloclemarch2 7614 nnnq 7617 ltnnnq 7618 nq0m0r 7651 nq0a0 7652 addpinq1 7659 nq02m 7660 prarloclemlt 7688 prarloclemlo 7689 prarloclemn 7694 prarloclemcalc 7697 nqprm 7737 caucvgprlemm 7863 caucvgprprlemml 7889 caucvgprprlemmu 7890 caucvgsrlemasr 7985 caucvgsr 7997 nntopi 8089 |
| Copyright terms: Public domain | W3C validator |