![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1pi | GIF version |
Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1pi | ⊢ 1o ∈ N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6575 | . 2 ⊢ 1o ∈ ω | |
2 | 1n0 6487 | . 2 ⊢ 1o ≠ ∅ | |
3 | elni 7370 | . 2 ⊢ (1o ∈ N ↔ (1o ∈ ω ∧ 1o ≠ ∅)) | |
4 | 1, 2, 3 | mpbir2an 944 | 1 ⊢ 1o ∈ N |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ≠ wne 2364 ∅c0 3447 ωcom 4623 1oc1o 6464 Ncnpi 7334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-int 3872 df-suc 4403 df-iom 4624 df-1o 6471 df-ni 7366 |
This theorem is referenced by: mulidpi 7380 1lt2pi 7402 nlt1pig 7403 indpi 7404 1nq 7428 1qec 7450 mulidnq 7451 1lt2nq 7468 archnqq 7479 prarloclemarch 7480 prarloclemarch2 7481 nnnq 7484 ltnnnq 7485 nq0m0r 7518 nq0a0 7519 addpinq1 7526 nq02m 7527 prarloclemlt 7555 prarloclemlo 7556 prarloclemn 7561 prarloclemcalc 7564 nqprm 7604 caucvgprlemm 7730 caucvgprprlemml 7756 caucvgprprlemmu 7757 caucvgsrlemasr 7852 caucvgsr 7864 nntopi 7956 |
Copyright terms: Public domain | W3C validator |