Proof of Theorem prarloclemcalc
| Step | Hyp | Ref
| Expression |
| 1 | | simprll 537 |
. . . . 5
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → 𝑄 ∈
Q) |
| 2 | | nqnq0a 7538 |
. . . . 5
⊢ ((𝑄 ∈ Q ∧
𝑄 ∈ Q)
→ (𝑄
+Q 𝑄) = (𝑄 +Q0 𝑄)) |
| 3 | 1, 1, 2 | syl2anc 411 |
. . . 4
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → (𝑄 +Q
𝑄) = (𝑄 +Q0 𝑄)) |
| 4 | 3 | oveq2d 5941 |
. . 3
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → (𝐴 +Q0
(𝑄
+Q 𝑄)) = (𝐴 +Q0 (𝑄 +Q0
𝑄))) |
| 5 | | simpll 527 |
. . . . 5
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → 𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄))) |
| 6 | | simprrl 539 |
. . . . . 6
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → 𝑋 ∈
Q) |
| 7 | | simprrr 540 |
. . . . . . . 8
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → 𝑀 ∈
ω) |
| 8 | | 1pi 7399 |
. . . . . . . . . . 11
⊢
1o ∈ N |
| 9 | | opelxpi 4696 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ω ∧
1o ∈ N) → 〈𝑀, 1o〉 ∈ (ω
× N)) |
| 10 | 8, 9 | mpan2 425 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ω →
〈𝑀,
1o〉 ∈ (ω × N)) |
| 11 | | enq0ex 7523 |
. . . . . . . . . . 11
⊢
~Q0 ∈ V |
| 12 | 11 | ecelqsi 6657 |
. . . . . . . . . 10
⊢
(〈𝑀,
1o〉 ∈ (ω × N) →
[〈𝑀,
1o〉] ~Q0 ∈ ((ω ×
N) / ~Q0 )) |
| 13 | 10, 12 | syl 14 |
. . . . . . . . 9
⊢ (𝑀 ∈ ω →
[〈𝑀,
1o〉] ~Q0 ∈ ((ω ×
N) / ~Q0 )) |
| 14 | | df-nq0 7509 |
. . . . . . . . 9
⊢
Q0 = ((ω × N)
/ ~Q0 ) |
| 15 | 13, 14 | eleqtrrdi 2290 |
. . . . . . . 8
⊢ (𝑀 ∈ ω →
[〈𝑀,
1o〉] ~Q0 ∈
Q0) |
| 16 | 7, 15 | syl 14 |
. . . . . . 7
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) →
[〈𝑀,
1o〉] ~Q0 ∈
Q0) |
| 17 | | nqnq0 7525 |
. . . . . . . 8
⊢
Q ⊆ Q0 |
| 18 | 17, 1 | sselid 3182 |
. . . . . . 7
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → 𝑄 ∈
Q0) |
| 19 | | mulclnq0 7536 |
. . . . . . 7
⊢
(([〈𝑀,
1o〉] ~Q0 ∈
Q0 ∧ 𝑄 ∈ Q0) →
([〈𝑀,
1o〉] ~Q0
·Q0 𝑄) ∈
Q0) |
| 20 | 16, 18, 19 | syl2anc 411 |
. . . . . 6
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) →
([〈𝑀,
1o〉] ~Q0
·Q0 𝑄) ∈
Q0) |
| 21 | | nqpnq0nq 7537 |
. . . . . 6
⊢ ((𝑋 ∈ Q ∧
([〈𝑀,
1o〉] ~Q0
·Q0 𝑄) ∈ Q0) →
(𝑋
+Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∈
Q) |
| 22 | 6, 20, 21 | syl2anc 411 |
. . . . 5
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → (𝑋 +Q0
([〈𝑀,
1o〉] ~Q0
·Q0 𝑄)) ∈ Q) |
| 23 | 5, 22 | eqeltrd 2273 |
. . . 4
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → 𝐴 ∈
Q) |
| 24 | | addclnq 7459 |
. . . . 5
⊢ ((𝑄 ∈ Q ∧
𝑄 ∈ Q)
→ (𝑄
+Q 𝑄) ∈ Q) |
| 25 | 1, 1, 24 | syl2anc 411 |
. . . 4
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → (𝑄 +Q
𝑄) ∈
Q) |
| 26 | | nqnq0a 7538 |
. . . 4
⊢ ((𝐴 ∈ Q ∧
(𝑄
+Q 𝑄) ∈ Q) → (𝐴 +Q
(𝑄
+Q 𝑄)) = (𝐴 +Q0 (𝑄 +Q
𝑄))) |
| 27 | 23, 25, 26 | syl2anc 411 |
. . 3
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → (𝐴 +Q
(𝑄
+Q 𝑄)) = (𝐴 +Q0 (𝑄 +Q
𝑄))) |
| 28 | | simplr 528 |
. . . . . 6
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) |
| 29 | | 2onn 6588 |
. . . . . . . . . . . . . 14
⊢
2o ∈ ω |
| 30 | | 2on0 6493 |
. . . . . . . . . . . . . 14
⊢
2o ≠ ∅ |
| 31 | | elni 7392 |
. . . . . . . . . . . . . 14
⊢
(2o ∈ N ↔ (2o ∈
ω ∧ 2o ≠ ∅)) |
| 32 | 29, 30, 31 | mpbir2an 944 |
. . . . . . . . . . . . 13
⊢
2o ∈ N |
| 33 | | nnppipi 7427 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ω ∧
2o ∈ N) → (𝑀 +o 2o) ∈
N) |
| 34 | 32, 33 | mpan2 425 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ω → (𝑀 +o 2o)
∈ N) |
| 35 | | opelxpi 4696 |
. . . . . . . . . . . 12
⊢ (((𝑀 +o 2o)
∈ N ∧ 1o ∈ N) →
〈(𝑀 +o
2o), 1o〉 ∈ (N ×
N)) |
| 36 | 34, 8, 35 | sylancl 413 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ω →
〈(𝑀 +o
2o), 1o〉 ∈ (N ×
N)) |
| 37 | | enqex 7444 |
. . . . . . . . . . . 12
⊢
~Q ∈ V |
| 38 | 37 | ecelqsi 6657 |
. . . . . . . . . . 11
⊢
(〈(𝑀
+o 2o), 1o〉 ∈ (N
× N) → [〈(𝑀 +o 2o),
1o〉] ~Q ∈ ((N
× N) / ~Q
)) |
| 39 | 36, 38 | syl 14 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ω →
[〈(𝑀 +o
2o), 1o〉] ~Q ∈
((N × N) / ~Q
)) |
| 40 | | df-nqqs 7432 |
. . . . . . . . . 10
⊢
Q = ((N × N) /
~Q ) |
| 41 | 39, 40 | eleqtrrdi 2290 |
. . . . . . . . 9
⊢ (𝑀 ∈ ω →
[〈(𝑀 +o
2o), 1o〉] ~Q ∈
Q) |
| 42 | 7, 41 | syl 14 |
. . . . . . . 8
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) →
[〈(𝑀 +o
2o), 1o〉] ~Q ∈
Q) |
| 43 | | mulclnq 7460 |
. . . . . . . 8
⊢
(([〈(𝑀
+o 2o), 1o〉] ~Q
∈ Q ∧ 𝑄 ∈ Q) →
([〈(𝑀 +o
2o), 1o〉] ~Q
·Q 𝑄) ∈ Q) |
| 44 | 42, 1, 43 | syl2anc 411 |
. . . . . . 7
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) →
([〈(𝑀 +o
2o), 1o〉] ~Q
·Q 𝑄) ∈ Q) |
| 45 | | nqnq0a 7538 |
. . . . . . 7
⊢ ((𝑋 ∈ Q ∧
([〈(𝑀 +o
2o), 1o〉] ~Q
·Q 𝑄) ∈ Q) → (𝑋 +Q
([〈(𝑀 +o
2o), 1o〉] ~Q
·Q 𝑄)) = (𝑋 +Q0 ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) |
| 46 | 6, 44, 45 | syl2anc 411 |
. . . . . 6
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → (𝑋 +Q
([〈(𝑀 +o
2o), 1o〉] ~Q
·Q 𝑄)) = (𝑋 +Q0 ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) |
| 47 | | nqnq0m 7539 |
. . . . . . . . 9
⊢
(([〈(𝑀
+o 2o), 1o〉] ~Q
∈ Q ∧ 𝑄 ∈ Q) →
([〈(𝑀 +o
2o), 1o〉] ~Q
·Q 𝑄) = ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q0 𝑄)) |
| 48 | 42, 1, 47 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) →
([〈(𝑀 +o
2o), 1o〉] ~Q
·Q 𝑄) = ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q0 𝑄)) |
| 49 | | nqnq0pi 7522 |
. . . . . . . . . . 11
⊢ (((𝑀 +o 2o)
∈ N ∧ 1o ∈ N) →
[〈(𝑀 +o
2o), 1o〉] ~Q0 =
[〈(𝑀 +o
2o), 1o〉] ~Q
) |
| 50 | 34, 8, 49 | sylancl 413 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ω →
[〈(𝑀 +o
2o), 1o〉] ~Q0 =
[〈(𝑀 +o
2o), 1o〉] ~Q
) |
| 51 | 7, 50 | syl 14 |
. . . . . . . . 9
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) →
[〈(𝑀 +o
2o), 1o〉] ~Q0 =
[〈(𝑀 +o
2o), 1o〉] ~Q
) |
| 52 | 51 | oveq1d 5940 |
. . . . . . . 8
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) →
([〈(𝑀 +o
2o), 1o〉] ~Q0
·Q0 𝑄) = ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q0 𝑄)) |
| 53 | 48, 52 | eqtr4d 2232 |
. . . . . . 7
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) →
([〈(𝑀 +o
2o), 1o〉] ~Q
·Q 𝑄) = ([〈(𝑀 +o 2o),
1o〉] ~Q0
·Q0 𝑄)) |
| 54 | 53 | oveq2d 5941 |
. . . . . 6
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → (𝑋 +Q0
([〈(𝑀 +o
2o), 1o〉] ~Q
·Q 𝑄)) = (𝑋 +Q0 ([〈(𝑀 +o 2o),
1o〉] ~Q0
·Q0 𝑄))) |
| 55 | 28, 46, 54 | 3eqtrd 2233 |
. . . . 5
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → 𝐵 = (𝑋 +Q0 ([〈(𝑀 +o 2o),
1o〉] ~Q0
·Q0 𝑄))) |
| 56 | | nnanq0 7542 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ω ∧
2o ∈ ω ∧ 1o ∈ N) →
[〈(𝑀 +o
2o), 1o〉] ~Q0 =
([〈𝑀,
1o〉] ~Q0 +Q0
[〈2o, 1o〉] ~Q0
)) |
| 57 | 8, 56 | mp3an3 1337 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ω ∧
2o ∈ ω) → [〈(𝑀 +o 2o),
1o〉] ~Q0 = ([〈𝑀, 1o〉]
~Q0 +Q0 [〈2o,
1o〉] ~Q0 )) |
| 58 | 7, 29, 57 | sylancl 413 |
. . . . . . . 8
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) →
[〈(𝑀 +o
2o), 1o〉] ~Q0 =
([〈𝑀,
1o〉] ~Q0 +Q0
[〈2o, 1o〉] ~Q0
)) |
| 59 | 58 | oveq1d 5940 |
. . . . . . 7
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) →
([〈(𝑀 +o
2o), 1o〉] ~Q0
·Q0 𝑄) = (([〈𝑀, 1o〉]
~Q0 +Q0 [〈2o,
1o〉] ~Q0 )
·Q0 𝑄)) |
| 60 | | opelxpi 4696 |
. . . . . . . . . . . 12
⊢
((2o ∈ ω ∧ 1o ∈
N) → 〈2o, 1o〉 ∈
(ω × N)) |
| 61 | 29, 8, 60 | mp2an 426 |
. . . . . . . . . . 11
⊢
〈2o, 1o〉 ∈ (ω ×
N) |
| 62 | 11 | ecelqsi 6657 |
. . . . . . . . . . 11
⊢
(〈2o, 1o〉 ∈ (ω ×
N) → [〈2o, 1o〉]
~Q0 ∈ ((ω × N) /
~Q0 )) |
| 63 | 61, 62 | ax-mp 5 |
. . . . . . . . . 10
⊢
[〈2o, 1o〉] ~Q0
∈ ((ω × N) / ~Q0
) |
| 64 | 63, 14 | eleqtrri 2272 |
. . . . . . . . 9
⊢
[〈2o, 1o〉] ~Q0
∈ Q0 |
| 65 | | distnq0r 7547 |
. . . . . . . . 9
⊢ ((𝑄 ∈
Q0 ∧ [〈𝑀, 1o〉]
~Q0 ∈ Q0 ∧
[〈2o, 1o〉] ~Q0 ∈
Q0) → (([〈𝑀, 1o〉]
~Q0 +Q0 [〈2o,
1o〉] ~Q0 )
·Q0 𝑄) = (([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄) +Q0
([〈2o, 1o〉] ~Q0
·Q0 𝑄))) |
| 66 | 64, 65 | mp3an3 1337 |
. . . . . . . 8
⊢ ((𝑄 ∈
Q0 ∧ [〈𝑀, 1o〉]
~Q0 ∈ Q0) →
(([〈𝑀,
1o〉] ~Q0 +Q0
[〈2o, 1o〉] ~Q0 )
·Q0 𝑄) = (([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄) +Q0
([〈2o, 1o〉] ~Q0
·Q0 𝑄))) |
| 67 | 18, 16, 66 | syl2anc 411 |
. . . . . . 7
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) →
(([〈𝑀,
1o〉] ~Q0 +Q0
[〈2o, 1o〉] ~Q0 )
·Q0 𝑄) = (([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄) +Q0
([〈2o, 1o〉] ~Q0
·Q0 𝑄))) |
| 68 | 59, 67 | eqtrd 2229 |
. . . . . 6
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) →
([〈(𝑀 +o
2o), 1o〉] ~Q0
·Q0 𝑄) = (([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄) +Q0
([〈2o, 1o〉] ~Q0
·Q0 𝑄))) |
| 69 | 68 | oveq2d 5941 |
. . . . 5
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → (𝑋 +Q0
([〈(𝑀 +o
2o), 1o〉] ~Q0
·Q0 𝑄)) = (𝑋 +Q0 (([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄) +Q0
([〈2o, 1o〉] ~Q0
·Q0 𝑄)))) |
| 70 | | nq02m 7549 |
. . . . . . . . 9
⊢ (𝑄 ∈
Q0 → ([〈2o, 1o〉]
~Q0 ·Q0 𝑄) = (𝑄 +Q0 𝑄)) |
| 71 | 70 | oveq2d 5941 |
. . . . . . . 8
⊢ (𝑄 ∈
Q0 → (([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄) +Q0
([〈2o, 1o〉] ~Q0
·Q0 𝑄)) = (([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄) +Q0
(𝑄
+Q0 𝑄))) |
| 72 | 71 | oveq2d 5941 |
. . . . . . 7
⊢ (𝑄 ∈
Q0 → (𝑋 +Q0 (([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄) +Q0
([〈2o, 1o〉] ~Q0
·Q0 𝑄))) = (𝑋 +Q0 (([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄) +Q0
(𝑄
+Q0 𝑄)))) |
| 73 | 18, 72 | syl 14 |
. . . . . 6
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → (𝑋 +Q0
(([〈𝑀,
1o〉] ~Q0
·Q0 𝑄) +Q0
([〈2o, 1o〉] ~Q0
·Q0 𝑄))) = (𝑋 +Q0 (([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄) +Q0
(𝑄
+Q0 𝑄)))) |
| 74 | 17, 6 | sselid 3182 |
. . . . . . 7
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → 𝑋 ∈
Q0) |
| 75 | | addclnq0 7535 |
. . . . . . . 8
⊢ ((𝑄 ∈
Q0 ∧ 𝑄 ∈ Q0) →
(𝑄
+Q0 𝑄) ∈
Q0) |
| 76 | 18, 18, 75 | syl2anc 411 |
. . . . . . 7
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → (𝑄 +Q0
𝑄) ∈
Q0) |
| 77 | | addassnq0 7546 |
. . . . . . 7
⊢ ((𝑋 ∈
Q0 ∧ ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄) ∈
Q0 ∧ (𝑄 +Q0 𝑄) ∈
Q0) → ((𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) +Q0
(𝑄
+Q0 𝑄)) = (𝑋 +Q0 (([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄) +Q0
(𝑄
+Q0 𝑄)))) |
| 78 | 74, 20, 76, 77 | syl3anc 1249 |
. . . . . 6
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) →
((𝑋
+Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) +Q0
(𝑄
+Q0 𝑄)) = (𝑋 +Q0 (([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄) +Q0
(𝑄
+Q0 𝑄)))) |
| 79 | 73, 78 | eqtr4d 2232 |
. . . . 5
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → (𝑋 +Q0
(([〈𝑀,
1o〉] ~Q0
·Q0 𝑄) +Q0
([〈2o, 1o〉] ~Q0
·Q0 𝑄))) = ((𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) +Q0
(𝑄
+Q0 𝑄))) |
| 80 | 55, 69, 79 | 3eqtrd 2233 |
. . . 4
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → 𝐵 = ((𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) +Q0
(𝑄
+Q0 𝑄))) |
| 81 | | oveq1 5932 |
. . . . . 6
⊢ (𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) → (𝐴 +Q0 (𝑄 +Q0
𝑄)) = ((𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) +Q0
(𝑄
+Q0 𝑄))) |
| 82 | 81 | eqeq2d 2208 |
. . . . 5
⊢ (𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) → (𝐵 = (𝐴 +Q0 (𝑄 +Q0
𝑄)) ↔ 𝐵 = ((𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) +Q0
(𝑄
+Q0 𝑄)))) |
| 83 | 5, 82 | syl 14 |
. . . 4
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → (𝐵 = (𝐴 +Q0 (𝑄 +Q0
𝑄)) ↔ 𝐵 = ((𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) +Q0
(𝑄
+Q0 𝑄)))) |
| 84 | 80, 83 | mpbird 167 |
. . 3
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → 𝐵 = (𝐴 +Q0 (𝑄 +Q0
𝑄))) |
| 85 | 4, 27, 84 | 3eqtr4rd 2240 |
. 2
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → 𝐵 = (𝐴 +Q (𝑄 +Q
𝑄))) |
| 86 | | simprlr 538 |
. . 3
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → (𝑄 +Q
𝑄)
<Q 𝑃) |
| 87 | | ltrelnq 7449 |
. . . . . 6
⊢
<Q ⊆ (Q ×
Q) |
| 88 | 87 | brel 4716 |
. . . . 5
⊢ ((𝑄 +Q
𝑄)
<Q 𝑃 → ((𝑄 +Q 𝑄) ∈ Q ∧
𝑃 ∈
Q)) |
| 89 | 86, 88 | syl 14 |
. . . 4
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) →
((𝑄
+Q 𝑄) ∈ Q ∧ 𝑃 ∈
Q)) |
| 90 | | ltanqg 7484 |
. . . . 5
⊢ (((𝑄 +Q
𝑄) ∈ Q
∧ 𝑃 ∈
Q ∧ 𝐴
∈ Q) → ((𝑄 +Q 𝑄) <Q
𝑃 ↔ (𝐴 +Q (𝑄 +Q
𝑄))
<Q (𝐴 +Q 𝑃))) |
| 91 | 90 | 3expa 1205 |
. . . 4
⊢ ((((𝑄 +Q
𝑄) ∈ Q
∧ 𝑃 ∈
Q) ∧ 𝐴
∈ Q) → ((𝑄 +Q 𝑄) <Q
𝑃 ↔ (𝐴 +Q (𝑄 +Q
𝑄))
<Q (𝐴 +Q 𝑃))) |
| 92 | 89, 23, 91 | syl2anc 411 |
. . 3
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) →
((𝑄
+Q 𝑄) <Q 𝑃 ↔ (𝐴 +Q (𝑄 +Q
𝑄))
<Q (𝐴 +Q 𝑃))) |
| 93 | 86, 92 | mpbid 147 |
. 2
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → (𝐴 +Q
(𝑄
+Q 𝑄)) <Q (𝐴 +Q
𝑃)) |
| 94 | 85, 93 | eqbrtrd 4056 |
1
⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉]
~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o),
1o〉] ~Q
·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q
𝑄)
<Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → 𝐵 <Q
(𝐴
+Q 𝑃)) |