ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemcalc GIF version

Theorem prarloclemcalc 7464
Description: Some calculations for prarloc 7465. (Contributed by Jim Kingdon, 26-Oct-2019.)
Assertion
Ref Expression
prarloclemcalc (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 <Q (𝐴 +Q 𝑃))

Proof of Theorem prarloclemcalc
StepHypRef Expression
1 simprll 532 . . . . 5 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝑄Q)
2 nqnq0a 7416 . . . . 5 ((𝑄Q𝑄Q) → (𝑄 +Q 𝑄) = (𝑄 +Q0 𝑄))
31, 1, 2syl2anc 409 . . . 4 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑄 +Q 𝑄) = (𝑄 +Q0 𝑄))
43oveq2d 5869 . . 3 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝐴 +Q0 (𝑄 +Q 𝑄)) = (𝐴 +Q0 (𝑄 +Q0 𝑄)))
5 simpll 524 . . . . 5 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)))
6 simprrl 534 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝑋Q)
7 simprrr 535 . . . . . . . 8 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝑀 ∈ ω)
8 1pi 7277 . . . . . . . . . . 11 1oN
9 opelxpi 4643 . . . . . . . . . . 11 ((𝑀 ∈ ω ∧ 1oN) → ⟨𝑀, 1o⟩ ∈ (ω × N))
108, 9mpan2 423 . . . . . . . . . 10 (𝑀 ∈ ω → ⟨𝑀, 1o⟩ ∈ (ω × N))
11 enq0ex 7401 . . . . . . . . . . 11 ~Q0 ∈ V
1211ecelqsi 6567 . . . . . . . . . 10 (⟨𝑀, 1o⟩ ∈ (ω × N) → [⟨𝑀, 1o⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
1310, 12syl 14 . . . . . . . . 9 (𝑀 ∈ ω → [⟨𝑀, 1o⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
14 df-nq0 7387 . . . . . . . . 9 Q0 = ((ω × N) / ~Q0 )
1513, 14eleqtrrdi 2264 . . . . . . . 8 (𝑀 ∈ ω → [⟨𝑀, 1o⟩] ~Q0Q0)
167, 15syl 14 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → [⟨𝑀, 1o⟩] ~Q0Q0)
17 nqnq0 7403 . . . . . . . 8 QQ0
1817, 1sselid 3145 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝑄Q0)
19 mulclnq0 7414 . . . . . . 7 (([⟨𝑀, 1o⟩] ~Q0Q0𝑄Q0) → ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) ∈ Q0)
2016, 18, 19syl2anc 409 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) ∈ Q0)
21 nqpnq0nq 7415 . . . . . 6 ((𝑋Q ∧ ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) ∈ Q0) → (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∈ Q)
226, 20, 21syl2anc 409 . . . . 5 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∈ Q)
235, 22eqeltrd 2247 . . . 4 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐴Q)
24 addclnq 7337 . . . . 5 ((𝑄Q𝑄Q) → (𝑄 +Q 𝑄) ∈ Q)
251, 1, 24syl2anc 409 . . . 4 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑄 +Q 𝑄) ∈ Q)
26 nqnq0a 7416 . . . 4 ((𝐴Q ∧ (𝑄 +Q 𝑄) ∈ Q) → (𝐴 +Q (𝑄 +Q 𝑄)) = (𝐴 +Q0 (𝑄 +Q 𝑄)))
2723, 25, 26syl2anc 409 . . 3 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝐴 +Q (𝑄 +Q 𝑄)) = (𝐴 +Q0 (𝑄 +Q 𝑄)))
28 simplr 525 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄)))
29 2onn 6500 . . . . . . . . . . . . . 14 2o ∈ ω
30 2on0 6405 . . . . . . . . . . . . . 14 2o ≠ ∅
31 elni 7270 . . . . . . . . . . . . . 14 (2oN ↔ (2o ∈ ω ∧ 2o ≠ ∅))
3229, 30, 31mpbir2an 937 . . . . . . . . . . . . 13 2oN
33 nnppipi 7305 . . . . . . . . . . . . 13 ((𝑀 ∈ ω ∧ 2oN) → (𝑀 +o 2o) ∈ N)
3432, 33mpan2 423 . . . . . . . . . . . 12 (𝑀 ∈ ω → (𝑀 +o 2o) ∈ N)
35 opelxpi 4643 . . . . . . . . . . . 12 (((𝑀 +o 2o) ∈ N ∧ 1oN) → ⟨(𝑀 +o 2o), 1o⟩ ∈ (N × N))
3634, 8, 35sylancl 411 . . . . . . . . . . 11 (𝑀 ∈ ω → ⟨(𝑀 +o 2o), 1o⟩ ∈ (N × N))
37 enqex 7322 . . . . . . . . . . . 12 ~Q ∈ V
3837ecelqsi 6567 . . . . . . . . . . 11 (⟨(𝑀 +o 2o), 1o⟩ ∈ (N × N) → [⟨(𝑀 +o 2o), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
3936, 38syl 14 . . . . . . . . . 10 (𝑀 ∈ ω → [⟨(𝑀 +o 2o), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
40 df-nqqs 7310 . . . . . . . . . 10 Q = ((N × N) / ~Q )
4139, 40eleqtrrdi 2264 . . . . . . . . 9 (𝑀 ∈ ω → [⟨(𝑀 +o 2o), 1o⟩] ~QQ)
427, 41syl 14 . . . . . . . 8 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → [⟨(𝑀 +o 2o), 1o⟩] ~QQ)
43 mulclnq 7338 . . . . . . . 8 (([⟨(𝑀 +o 2o), 1o⟩] ~QQ𝑄Q) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄) ∈ Q)
4442, 1, 43syl2anc 409 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄) ∈ Q)
45 nqnq0a 7416 . . . . . . 7 ((𝑋Q ∧ ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄) ∈ Q) → (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄)) = (𝑋 +Q0 ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄)))
466, 44, 45syl2anc 409 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄)) = (𝑋 +Q0 ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄)))
47 nqnq0m 7417 . . . . . . . . 9 (([⟨(𝑀 +o 2o), 1o⟩] ~QQ𝑄Q) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄) = ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q0 𝑄))
4842, 1, 47syl2anc 409 . . . . . . . 8 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄) = ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q0 𝑄))
49 nqnq0pi 7400 . . . . . . . . . . 11 (((𝑀 +o 2o) ∈ N ∧ 1oN) → [⟨(𝑀 +o 2o), 1o⟩] ~Q0 = [⟨(𝑀 +o 2o), 1o⟩] ~Q )
5034, 8, 49sylancl 411 . . . . . . . . . 10 (𝑀 ∈ ω → [⟨(𝑀 +o 2o), 1o⟩] ~Q0 = [⟨(𝑀 +o 2o), 1o⟩] ~Q )
517, 50syl 14 . . . . . . . . 9 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → [⟨(𝑀 +o 2o), 1o⟩] ~Q0 = [⟨(𝑀 +o 2o), 1o⟩] ~Q )
5251oveq1d 5868 . . . . . . . 8 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄) = ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q0 𝑄))
5348, 52eqtr4d 2206 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄) = ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄))
5453oveq2d 5869 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑋 +Q0 ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄)) = (𝑋 +Q0 ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄)))
5528, 46, 543eqtrd 2207 . . . . 5 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 = (𝑋 +Q0 ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄)))
56 nnanq0 7420 . . . . . . . . . 10 ((𝑀 ∈ ω ∧ 2o ∈ ω ∧ 1oN) → [⟨(𝑀 +o 2o), 1o⟩] ~Q0 = ([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ))
578, 56mp3an3 1321 . . . . . . . . 9 ((𝑀 ∈ ω ∧ 2o ∈ ω) → [⟨(𝑀 +o 2o), 1o⟩] ~Q0 = ([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ))
587, 29, 57sylancl 411 . . . . . . . 8 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → [⟨(𝑀 +o 2o), 1o⟩] ~Q0 = ([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ))
5958oveq1d 5868 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄) = (([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ) ·Q0 𝑄))
60 opelxpi 4643 . . . . . . . . . . . 12 ((2o ∈ ω ∧ 1oN) → ⟨2o, 1o⟩ ∈ (ω × N))
6129, 8, 60mp2an 424 . . . . . . . . . . 11 ⟨2o, 1o⟩ ∈ (ω × N)
6211ecelqsi 6567 . . . . . . . . . . 11 (⟨2o, 1o⟩ ∈ (ω × N) → [⟨2o, 1o⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
6361, 62ax-mp 5 . . . . . . . . . 10 [⟨2o, 1o⟩] ~Q0 ∈ ((ω × N) / ~Q0 )
6463, 14eleqtrri 2246 . . . . . . . . 9 [⟨2o, 1o⟩] ~Q0Q0
65 distnq0r 7425 . . . . . . . . 9 ((𝑄Q0 ∧ [⟨𝑀, 1o⟩] ~Q0Q0 ∧ [⟨2o, 1o⟩] ~Q0Q0) → (([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ) ·Q0 𝑄) = (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄)))
6664, 65mp3an3 1321 . . . . . . . 8 ((𝑄Q0 ∧ [⟨𝑀, 1o⟩] ~Q0Q0) → (([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ) ·Q0 𝑄) = (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄)))
6718, 16, 66syl2anc 409 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ) ·Q0 𝑄) = (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄)))
6859, 67eqtrd 2203 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄) = (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄)))
6968oveq2d 5869 . . . . 5 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑋 +Q0 ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄)) = (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄))))
70 nq02m 7427 . . . . . . . . 9 (𝑄Q0 → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄) = (𝑄 +Q0 𝑄))
7170oveq2d 5869 . . . . . . . 8 (𝑄Q0 → (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄)) = (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄)))
7271oveq2d 5869 . . . . . . 7 (𝑄Q0 → (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄))) = (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄))))
7318, 72syl 14 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄))) = (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄))))
7417, 6sselid 3145 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝑋Q0)
75 addclnq0 7413 . . . . . . . 8 ((𝑄Q0𝑄Q0) → (𝑄 +Q0 𝑄) ∈ Q0)
7618, 18, 75syl2anc 409 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑄 +Q0 𝑄) ∈ Q0)
77 addassnq0 7424 . . . . . . 7 ((𝑋Q0 ∧ ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) ∈ Q0 ∧ (𝑄 +Q0 𝑄) ∈ Q0) → ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)) = (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄))))
7874, 20, 76, 77syl3anc 1233 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)) = (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄))))
7973, 78eqtr4d 2206 . . . . 5 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄))) = ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)))
8055, 69, 793eqtrd 2207 . . . 4 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 = ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)))
81 oveq1 5860 . . . . . 6 (𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) → (𝐴 +Q0 (𝑄 +Q0 𝑄)) = ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)))
8281eqeq2d 2182 . . . . 5 (𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) → (𝐵 = (𝐴 +Q0 (𝑄 +Q0 𝑄)) ↔ 𝐵 = ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄))))
835, 82syl 14 . . . 4 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝐵 = (𝐴 +Q0 (𝑄 +Q0 𝑄)) ↔ 𝐵 = ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄))))
8480, 83mpbird 166 . . 3 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 = (𝐴 +Q0 (𝑄 +Q0 𝑄)))
854, 27, 843eqtr4rd 2214 . 2 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 = (𝐴 +Q (𝑄 +Q 𝑄)))
86 simprlr 533 . . 3 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑄 +Q 𝑄) <Q 𝑃)
87 ltrelnq 7327 . . . . . 6 <Q ⊆ (Q × Q)
8887brel 4663 . . . . 5 ((𝑄 +Q 𝑄) <Q 𝑃 → ((𝑄 +Q 𝑄) ∈ Q𝑃Q))
8986, 88syl 14 . . . 4 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ((𝑄 +Q 𝑄) ∈ Q𝑃Q))
90 ltanqg 7362 . . . . 5 (((𝑄 +Q 𝑄) ∈ Q𝑃Q𝐴Q) → ((𝑄 +Q 𝑄) <Q 𝑃 ↔ (𝐴 +Q (𝑄 +Q 𝑄)) <Q (𝐴 +Q 𝑃)))
91903expa 1198 . . . 4 ((((𝑄 +Q 𝑄) ∈ Q𝑃Q) ∧ 𝐴Q) → ((𝑄 +Q 𝑄) <Q 𝑃 ↔ (𝐴 +Q (𝑄 +Q 𝑄)) <Q (𝐴 +Q 𝑃)))
9289, 23, 91syl2anc 409 . . 3 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ((𝑄 +Q 𝑄) <Q 𝑃 ↔ (𝐴 +Q (𝑄 +Q 𝑄)) <Q (𝐴 +Q 𝑃)))
9386, 92mpbid 146 . 2 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝐴 +Q (𝑄 +Q 𝑄)) <Q (𝐴 +Q 𝑃))
9485, 93eqbrtrd 4011 1 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 <Q (𝐴 +Q 𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wne 2340  c0 3414  cop 3586   class class class wbr 3989  ωcom 4574   × cxp 4609  (class class class)co 5853  1oc1o 6388  2oc2o 6389   +o coa 6392  [cec 6511   / cqs 6512  Ncnpi 7234   ~Q ceq 7241  Qcnq 7242   +Q cplq 7244   ·Q cmq 7245   <Q cltq 7247   ~Q0 ceq0 7248  Q0cnq0 7249   +Q0 cplq0 7251   ·Q0 cmq0 7252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-plq0 7389  df-mq0 7390
This theorem is referenced by:  prarloc  7465
  Copyright terms: Public domain W3C validator