ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemcalc GIF version

Theorem prarloclemcalc 7492
Description: Some calculations for prarloc 7493. (Contributed by Jim Kingdon, 26-Oct-2019.)
Assertion
Ref Expression
prarloclemcalc (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 <Q (𝐴 +Q 𝑃))

Proof of Theorem prarloclemcalc
StepHypRef Expression
1 simprll 537 . . . . 5 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝑄Q)
2 nqnq0a 7444 . . . . 5 ((𝑄Q𝑄Q) → (𝑄 +Q 𝑄) = (𝑄 +Q0 𝑄))
31, 1, 2syl2anc 411 . . . 4 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑄 +Q 𝑄) = (𝑄 +Q0 𝑄))
43oveq2d 5885 . . 3 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝐴 +Q0 (𝑄 +Q 𝑄)) = (𝐴 +Q0 (𝑄 +Q0 𝑄)))
5 simpll 527 . . . . 5 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)))
6 simprrl 539 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝑋Q)
7 simprrr 540 . . . . . . . 8 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝑀 ∈ ω)
8 1pi 7305 . . . . . . . . . . 11 1oN
9 opelxpi 4655 . . . . . . . . . . 11 ((𝑀 ∈ ω ∧ 1oN) → ⟨𝑀, 1o⟩ ∈ (ω × N))
108, 9mpan2 425 . . . . . . . . . 10 (𝑀 ∈ ω → ⟨𝑀, 1o⟩ ∈ (ω × N))
11 enq0ex 7429 . . . . . . . . . . 11 ~Q0 ∈ V
1211ecelqsi 6583 . . . . . . . . . 10 (⟨𝑀, 1o⟩ ∈ (ω × N) → [⟨𝑀, 1o⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
1310, 12syl 14 . . . . . . . . 9 (𝑀 ∈ ω → [⟨𝑀, 1o⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
14 df-nq0 7415 . . . . . . . . 9 Q0 = ((ω × N) / ~Q0 )
1513, 14eleqtrrdi 2271 . . . . . . . 8 (𝑀 ∈ ω → [⟨𝑀, 1o⟩] ~Q0Q0)
167, 15syl 14 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → [⟨𝑀, 1o⟩] ~Q0Q0)
17 nqnq0 7431 . . . . . . . 8 QQ0
1817, 1sselid 3153 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝑄Q0)
19 mulclnq0 7442 . . . . . . 7 (([⟨𝑀, 1o⟩] ~Q0Q0𝑄Q0) → ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) ∈ Q0)
2016, 18, 19syl2anc 411 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) ∈ Q0)
21 nqpnq0nq 7443 . . . . . 6 ((𝑋Q ∧ ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) ∈ Q0) → (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∈ Q)
226, 20, 21syl2anc 411 . . . . 5 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∈ Q)
235, 22eqeltrd 2254 . . . 4 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐴Q)
24 addclnq 7365 . . . . 5 ((𝑄Q𝑄Q) → (𝑄 +Q 𝑄) ∈ Q)
251, 1, 24syl2anc 411 . . . 4 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑄 +Q 𝑄) ∈ Q)
26 nqnq0a 7444 . . . 4 ((𝐴Q ∧ (𝑄 +Q 𝑄) ∈ Q) → (𝐴 +Q (𝑄 +Q 𝑄)) = (𝐴 +Q0 (𝑄 +Q 𝑄)))
2723, 25, 26syl2anc 411 . . 3 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝐴 +Q (𝑄 +Q 𝑄)) = (𝐴 +Q0 (𝑄 +Q 𝑄)))
28 simplr 528 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄)))
29 2onn 6516 . . . . . . . . . . . . . 14 2o ∈ ω
30 2on0 6421 . . . . . . . . . . . . . 14 2o ≠ ∅
31 elni 7298 . . . . . . . . . . . . . 14 (2oN ↔ (2o ∈ ω ∧ 2o ≠ ∅))
3229, 30, 31mpbir2an 942 . . . . . . . . . . . . 13 2oN
33 nnppipi 7333 . . . . . . . . . . . . 13 ((𝑀 ∈ ω ∧ 2oN) → (𝑀 +o 2o) ∈ N)
3432, 33mpan2 425 . . . . . . . . . . . 12 (𝑀 ∈ ω → (𝑀 +o 2o) ∈ N)
35 opelxpi 4655 . . . . . . . . . . . 12 (((𝑀 +o 2o) ∈ N ∧ 1oN) → ⟨(𝑀 +o 2o), 1o⟩ ∈ (N × N))
3634, 8, 35sylancl 413 . . . . . . . . . . 11 (𝑀 ∈ ω → ⟨(𝑀 +o 2o), 1o⟩ ∈ (N × N))
37 enqex 7350 . . . . . . . . . . . 12 ~Q ∈ V
3837ecelqsi 6583 . . . . . . . . . . 11 (⟨(𝑀 +o 2o), 1o⟩ ∈ (N × N) → [⟨(𝑀 +o 2o), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
3936, 38syl 14 . . . . . . . . . 10 (𝑀 ∈ ω → [⟨(𝑀 +o 2o), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
40 df-nqqs 7338 . . . . . . . . . 10 Q = ((N × N) / ~Q )
4139, 40eleqtrrdi 2271 . . . . . . . . 9 (𝑀 ∈ ω → [⟨(𝑀 +o 2o), 1o⟩] ~QQ)
427, 41syl 14 . . . . . . . 8 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → [⟨(𝑀 +o 2o), 1o⟩] ~QQ)
43 mulclnq 7366 . . . . . . . 8 (([⟨(𝑀 +o 2o), 1o⟩] ~QQ𝑄Q) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄) ∈ Q)
4442, 1, 43syl2anc 411 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄) ∈ Q)
45 nqnq0a 7444 . . . . . . 7 ((𝑋Q ∧ ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄) ∈ Q) → (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄)) = (𝑋 +Q0 ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄)))
466, 44, 45syl2anc 411 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄)) = (𝑋 +Q0 ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄)))
47 nqnq0m 7445 . . . . . . . . 9 (([⟨(𝑀 +o 2o), 1o⟩] ~QQ𝑄Q) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄) = ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q0 𝑄))
4842, 1, 47syl2anc 411 . . . . . . . 8 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄) = ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q0 𝑄))
49 nqnq0pi 7428 . . . . . . . . . . 11 (((𝑀 +o 2o) ∈ N ∧ 1oN) → [⟨(𝑀 +o 2o), 1o⟩] ~Q0 = [⟨(𝑀 +o 2o), 1o⟩] ~Q )
5034, 8, 49sylancl 413 . . . . . . . . . 10 (𝑀 ∈ ω → [⟨(𝑀 +o 2o), 1o⟩] ~Q0 = [⟨(𝑀 +o 2o), 1o⟩] ~Q )
517, 50syl 14 . . . . . . . . 9 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → [⟨(𝑀 +o 2o), 1o⟩] ~Q0 = [⟨(𝑀 +o 2o), 1o⟩] ~Q )
5251oveq1d 5884 . . . . . . . 8 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄) = ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q0 𝑄))
5348, 52eqtr4d 2213 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄) = ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄))
5453oveq2d 5885 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑋 +Q0 ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄)) = (𝑋 +Q0 ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄)))
5528, 46, 543eqtrd 2214 . . . . 5 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 = (𝑋 +Q0 ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄)))
56 nnanq0 7448 . . . . . . . . . 10 ((𝑀 ∈ ω ∧ 2o ∈ ω ∧ 1oN) → [⟨(𝑀 +o 2o), 1o⟩] ~Q0 = ([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ))
578, 56mp3an3 1326 . . . . . . . . 9 ((𝑀 ∈ ω ∧ 2o ∈ ω) → [⟨(𝑀 +o 2o), 1o⟩] ~Q0 = ([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ))
587, 29, 57sylancl 413 . . . . . . . 8 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → [⟨(𝑀 +o 2o), 1o⟩] ~Q0 = ([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ))
5958oveq1d 5884 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄) = (([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ) ·Q0 𝑄))
60 opelxpi 4655 . . . . . . . . . . . 12 ((2o ∈ ω ∧ 1oN) → ⟨2o, 1o⟩ ∈ (ω × N))
6129, 8, 60mp2an 426 . . . . . . . . . . 11 ⟨2o, 1o⟩ ∈ (ω × N)
6211ecelqsi 6583 . . . . . . . . . . 11 (⟨2o, 1o⟩ ∈ (ω × N) → [⟨2o, 1o⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
6361, 62ax-mp 5 . . . . . . . . . 10 [⟨2o, 1o⟩] ~Q0 ∈ ((ω × N) / ~Q0 )
6463, 14eleqtrri 2253 . . . . . . . . 9 [⟨2o, 1o⟩] ~Q0Q0
65 distnq0r 7453 . . . . . . . . 9 ((𝑄Q0 ∧ [⟨𝑀, 1o⟩] ~Q0Q0 ∧ [⟨2o, 1o⟩] ~Q0Q0) → (([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ) ·Q0 𝑄) = (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄)))
6664, 65mp3an3 1326 . . . . . . . 8 ((𝑄Q0 ∧ [⟨𝑀, 1o⟩] ~Q0Q0) → (([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ) ·Q0 𝑄) = (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄)))
6718, 16, 66syl2anc 411 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ) ·Q0 𝑄) = (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄)))
6859, 67eqtrd 2210 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄) = (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄)))
6968oveq2d 5885 . . . . 5 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑋 +Q0 ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄)) = (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄))))
70 nq02m 7455 . . . . . . . . 9 (𝑄Q0 → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄) = (𝑄 +Q0 𝑄))
7170oveq2d 5885 . . . . . . . 8 (𝑄Q0 → (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄)) = (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄)))
7271oveq2d 5885 . . . . . . 7 (𝑄Q0 → (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄))) = (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄))))
7318, 72syl 14 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄))) = (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄))))
7417, 6sselid 3153 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝑋Q0)
75 addclnq0 7441 . . . . . . . 8 ((𝑄Q0𝑄Q0) → (𝑄 +Q0 𝑄) ∈ Q0)
7618, 18, 75syl2anc 411 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑄 +Q0 𝑄) ∈ Q0)
77 addassnq0 7452 . . . . . . 7 ((𝑋Q0 ∧ ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) ∈ Q0 ∧ (𝑄 +Q0 𝑄) ∈ Q0) → ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)) = (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄))))
7874, 20, 76, 77syl3anc 1238 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)) = (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄))))
7973, 78eqtr4d 2213 . . . . 5 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄))) = ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)))
8055, 69, 793eqtrd 2214 . . . 4 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 = ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)))
81 oveq1 5876 . . . . . 6 (𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) → (𝐴 +Q0 (𝑄 +Q0 𝑄)) = ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)))
8281eqeq2d 2189 . . . . 5 (𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) → (𝐵 = (𝐴 +Q0 (𝑄 +Q0 𝑄)) ↔ 𝐵 = ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄))))
835, 82syl 14 . . . 4 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝐵 = (𝐴 +Q0 (𝑄 +Q0 𝑄)) ↔ 𝐵 = ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄))))
8480, 83mpbird 167 . . 3 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 = (𝐴 +Q0 (𝑄 +Q0 𝑄)))
854, 27, 843eqtr4rd 2221 . 2 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 = (𝐴 +Q (𝑄 +Q 𝑄)))
86 simprlr 538 . . 3 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑄 +Q 𝑄) <Q 𝑃)
87 ltrelnq 7355 . . . . . 6 <Q ⊆ (Q × Q)
8887brel 4675 . . . . 5 ((𝑄 +Q 𝑄) <Q 𝑃 → ((𝑄 +Q 𝑄) ∈ Q𝑃Q))
8986, 88syl 14 . . . 4 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ((𝑄 +Q 𝑄) ∈ Q𝑃Q))
90 ltanqg 7390 . . . . 5 (((𝑄 +Q 𝑄) ∈ Q𝑃Q𝐴Q) → ((𝑄 +Q 𝑄) <Q 𝑃 ↔ (𝐴 +Q (𝑄 +Q 𝑄)) <Q (𝐴 +Q 𝑃)))
91903expa 1203 . . . 4 ((((𝑄 +Q 𝑄) ∈ Q𝑃Q) ∧ 𝐴Q) → ((𝑄 +Q 𝑄) <Q 𝑃 ↔ (𝐴 +Q (𝑄 +Q 𝑄)) <Q (𝐴 +Q 𝑃)))
9289, 23, 91syl2anc 411 . . 3 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ((𝑄 +Q 𝑄) <Q 𝑃 ↔ (𝐴 +Q (𝑄 +Q 𝑄)) <Q (𝐴 +Q 𝑃)))
9386, 92mpbid 147 . 2 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝐴 +Q (𝑄 +Q 𝑄)) <Q (𝐴 +Q 𝑃))
9485, 93eqbrtrd 4022 1 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 <Q (𝐴 +Q 𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wne 2347  c0 3422  cop 3594   class class class wbr 4000  ωcom 4586   × cxp 4621  (class class class)co 5869  1oc1o 6404  2oc2o 6405   +o coa 6408  [cec 6527   / cqs 6528  Ncnpi 7262   ~Q ceq 7269  Qcnq 7270   +Q cplq 7272   ·Q cmq 7273   <Q cltq 7275   ~Q0 ceq0 7276  Q0cnq0 7277   +Q0 cplq0 7279   ·Q0 cmq0 7280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-2o 6412  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-lti 7297  df-plpq 7334  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-mqqs 7340  df-ltnqqs 7343  df-enq0 7414  df-nq0 7415  df-plq0 7417  df-mq0 7418
This theorem is referenced by:  prarloc  7493
  Copyright terms: Public domain W3C validator