ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemcalc GIF version

Theorem prarloclemcalc 7303
Description: Some calculations for prarloc 7304. (Contributed by Jim Kingdon, 26-Oct-2019.)
Assertion
Ref Expression
prarloclemcalc (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 <Q (𝐴 +Q 𝑃))

Proof of Theorem prarloclemcalc
StepHypRef Expression
1 simprll 526 . . . . 5 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝑄Q)
2 nqnq0a 7255 . . . . 5 ((𝑄Q𝑄Q) → (𝑄 +Q 𝑄) = (𝑄 +Q0 𝑄))
31, 1, 2syl2anc 408 . . . 4 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑄 +Q 𝑄) = (𝑄 +Q0 𝑄))
43oveq2d 5783 . . 3 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝐴 +Q0 (𝑄 +Q 𝑄)) = (𝐴 +Q0 (𝑄 +Q0 𝑄)))
5 simpll 518 . . . . 5 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)))
6 simprrl 528 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝑋Q)
7 simprrr 529 . . . . . . . 8 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝑀 ∈ ω)
8 1pi 7116 . . . . . . . . . . 11 1oN
9 opelxpi 4566 . . . . . . . . . . 11 ((𝑀 ∈ ω ∧ 1oN) → ⟨𝑀, 1o⟩ ∈ (ω × N))
108, 9mpan2 421 . . . . . . . . . 10 (𝑀 ∈ ω → ⟨𝑀, 1o⟩ ∈ (ω × N))
11 enq0ex 7240 . . . . . . . . . . 11 ~Q0 ∈ V
1211ecelqsi 6476 . . . . . . . . . 10 (⟨𝑀, 1o⟩ ∈ (ω × N) → [⟨𝑀, 1o⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
1310, 12syl 14 . . . . . . . . 9 (𝑀 ∈ ω → [⟨𝑀, 1o⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
14 df-nq0 7226 . . . . . . . . 9 Q0 = ((ω × N) / ~Q0 )
1513, 14eleqtrrdi 2231 . . . . . . . 8 (𝑀 ∈ ω → [⟨𝑀, 1o⟩] ~Q0Q0)
167, 15syl 14 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → [⟨𝑀, 1o⟩] ~Q0Q0)
17 nqnq0 7242 . . . . . . . 8 QQ0
1817, 1sseldi 3090 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝑄Q0)
19 mulclnq0 7253 . . . . . . 7 (([⟨𝑀, 1o⟩] ~Q0Q0𝑄Q0) → ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) ∈ Q0)
2016, 18, 19syl2anc 408 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) ∈ Q0)
21 nqpnq0nq 7254 . . . . . 6 ((𝑋Q ∧ ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) ∈ Q0) → (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∈ Q)
226, 20, 21syl2anc 408 . . . . 5 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∈ Q)
235, 22eqeltrd 2214 . . . 4 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐴Q)
24 addclnq 7176 . . . . 5 ((𝑄Q𝑄Q) → (𝑄 +Q 𝑄) ∈ Q)
251, 1, 24syl2anc 408 . . . 4 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑄 +Q 𝑄) ∈ Q)
26 nqnq0a 7255 . . . 4 ((𝐴Q ∧ (𝑄 +Q 𝑄) ∈ Q) → (𝐴 +Q (𝑄 +Q 𝑄)) = (𝐴 +Q0 (𝑄 +Q 𝑄)))
2723, 25, 26syl2anc 408 . . 3 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝐴 +Q (𝑄 +Q 𝑄)) = (𝐴 +Q0 (𝑄 +Q 𝑄)))
28 simplr 519 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄)))
29 2onn 6410 . . . . . . . . . . . . . 14 2o ∈ ω
30 2on0 6316 . . . . . . . . . . . . . 14 2o ≠ ∅
31 elni 7109 . . . . . . . . . . . . . 14 (2oN ↔ (2o ∈ ω ∧ 2o ≠ ∅))
3229, 30, 31mpbir2an 926 . . . . . . . . . . . . 13 2oN
33 nnppipi 7144 . . . . . . . . . . . . 13 ((𝑀 ∈ ω ∧ 2oN) → (𝑀 +o 2o) ∈ N)
3432, 33mpan2 421 . . . . . . . . . . . 12 (𝑀 ∈ ω → (𝑀 +o 2o) ∈ N)
35 opelxpi 4566 . . . . . . . . . . . 12 (((𝑀 +o 2o) ∈ N ∧ 1oN) → ⟨(𝑀 +o 2o), 1o⟩ ∈ (N × N))
3634, 8, 35sylancl 409 . . . . . . . . . . 11 (𝑀 ∈ ω → ⟨(𝑀 +o 2o), 1o⟩ ∈ (N × N))
37 enqex 7161 . . . . . . . . . . . 12 ~Q ∈ V
3837ecelqsi 6476 . . . . . . . . . . 11 (⟨(𝑀 +o 2o), 1o⟩ ∈ (N × N) → [⟨(𝑀 +o 2o), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
3936, 38syl 14 . . . . . . . . . 10 (𝑀 ∈ ω → [⟨(𝑀 +o 2o), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
40 df-nqqs 7149 . . . . . . . . . 10 Q = ((N × N) / ~Q )
4139, 40eleqtrrdi 2231 . . . . . . . . 9 (𝑀 ∈ ω → [⟨(𝑀 +o 2o), 1o⟩] ~QQ)
427, 41syl 14 . . . . . . . 8 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → [⟨(𝑀 +o 2o), 1o⟩] ~QQ)
43 mulclnq 7177 . . . . . . . 8 (([⟨(𝑀 +o 2o), 1o⟩] ~QQ𝑄Q) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄) ∈ Q)
4442, 1, 43syl2anc 408 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄) ∈ Q)
45 nqnq0a 7255 . . . . . . 7 ((𝑋Q ∧ ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄) ∈ Q) → (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄)) = (𝑋 +Q0 ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄)))
466, 44, 45syl2anc 408 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄)) = (𝑋 +Q0 ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄)))
47 nqnq0m 7256 . . . . . . . . 9 (([⟨(𝑀 +o 2o), 1o⟩] ~QQ𝑄Q) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄) = ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q0 𝑄))
4842, 1, 47syl2anc 408 . . . . . . . 8 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄) = ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q0 𝑄))
49 nqnq0pi 7239 . . . . . . . . . . 11 (((𝑀 +o 2o) ∈ N ∧ 1oN) → [⟨(𝑀 +o 2o), 1o⟩] ~Q0 = [⟨(𝑀 +o 2o), 1o⟩] ~Q )
5034, 8, 49sylancl 409 . . . . . . . . . 10 (𝑀 ∈ ω → [⟨(𝑀 +o 2o), 1o⟩] ~Q0 = [⟨(𝑀 +o 2o), 1o⟩] ~Q )
517, 50syl 14 . . . . . . . . 9 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → [⟨(𝑀 +o 2o), 1o⟩] ~Q0 = [⟨(𝑀 +o 2o), 1o⟩] ~Q )
5251oveq1d 5782 . . . . . . . 8 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄) = ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q0 𝑄))
5348, 52eqtr4d 2173 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄) = ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄))
5453oveq2d 5783 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑋 +Q0 ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄)) = (𝑋 +Q0 ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄)))
5528, 46, 543eqtrd 2174 . . . . 5 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 = (𝑋 +Q0 ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄)))
56 nnanq0 7259 . . . . . . . . . 10 ((𝑀 ∈ ω ∧ 2o ∈ ω ∧ 1oN) → [⟨(𝑀 +o 2o), 1o⟩] ~Q0 = ([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ))
578, 56mp3an3 1304 . . . . . . . . 9 ((𝑀 ∈ ω ∧ 2o ∈ ω) → [⟨(𝑀 +o 2o), 1o⟩] ~Q0 = ([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ))
587, 29, 57sylancl 409 . . . . . . . 8 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → [⟨(𝑀 +o 2o), 1o⟩] ~Q0 = ([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ))
5958oveq1d 5782 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄) = (([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ) ·Q0 𝑄))
60 opelxpi 4566 . . . . . . . . . . . 12 ((2o ∈ ω ∧ 1oN) → ⟨2o, 1o⟩ ∈ (ω × N))
6129, 8, 60mp2an 422 . . . . . . . . . . 11 ⟨2o, 1o⟩ ∈ (ω × N)
6211ecelqsi 6476 . . . . . . . . . . 11 (⟨2o, 1o⟩ ∈ (ω × N) → [⟨2o, 1o⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
6361, 62ax-mp 5 . . . . . . . . . 10 [⟨2o, 1o⟩] ~Q0 ∈ ((ω × N) / ~Q0 )
6463, 14eleqtrri 2213 . . . . . . . . 9 [⟨2o, 1o⟩] ~Q0Q0
65 distnq0r 7264 . . . . . . . . 9 ((𝑄Q0 ∧ [⟨𝑀, 1o⟩] ~Q0Q0 ∧ [⟨2o, 1o⟩] ~Q0Q0) → (([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ) ·Q0 𝑄) = (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄)))
6664, 65mp3an3 1304 . . . . . . . 8 ((𝑄Q0 ∧ [⟨𝑀, 1o⟩] ~Q0Q0) → (([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ) ·Q0 𝑄) = (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄)))
6718, 16, 66syl2anc 408 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (([⟨𝑀, 1o⟩] ~Q0 +Q0 [⟨2o, 1o⟩] ~Q0 ) ·Q0 𝑄) = (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄)))
6859, 67eqtrd 2170 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄) = (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄)))
6968oveq2d 5783 . . . . 5 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑋 +Q0 ([⟨(𝑀 +o 2o), 1o⟩] ~Q0 ·Q0 𝑄)) = (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄))))
70 nq02m 7266 . . . . . . . . 9 (𝑄Q0 → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄) = (𝑄 +Q0 𝑄))
7170oveq2d 5783 . . . . . . . 8 (𝑄Q0 → (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄)) = (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄)))
7271oveq2d 5783 . . . . . . 7 (𝑄Q0 → (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄))) = (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄))))
7318, 72syl 14 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄))) = (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄))))
7417, 6sseldi 3090 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝑋Q0)
75 addclnq0 7252 . . . . . . . 8 ((𝑄Q0𝑄Q0) → (𝑄 +Q0 𝑄) ∈ Q0)
7618, 18, 75syl2anc 408 . . . . . . 7 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑄 +Q0 𝑄) ∈ Q0)
77 addassnq0 7263 . . . . . . 7 ((𝑋Q0 ∧ ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) ∈ Q0 ∧ (𝑄 +Q0 𝑄) ∈ Q0) → ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)) = (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄))))
7874, 20, 76, 77syl3anc 1216 . . . . . 6 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)) = (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄))))
7973, 78eqtr4d 2173 . . . . 5 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑋 +Q0 (([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2o, 1o⟩] ~Q0 ·Q0 𝑄))) = ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)))
8055, 69, 793eqtrd 2174 . . . 4 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 = ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)))
81 oveq1 5774 . . . . . 6 (𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) → (𝐴 +Q0 (𝑄 +Q0 𝑄)) = ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)))
8281eqeq2d 2149 . . . . 5 (𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) → (𝐵 = (𝐴 +Q0 (𝑄 +Q0 𝑄)) ↔ 𝐵 = ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄))))
835, 82syl 14 . . . 4 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝐵 = (𝐴 +Q0 (𝑄 +Q0 𝑄)) ↔ 𝐵 = ((𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄))))
8480, 83mpbird 166 . . 3 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 = (𝐴 +Q0 (𝑄 +Q0 𝑄)))
854, 27, 843eqtr4rd 2181 . 2 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 = (𝐴 +Q (𝑄 +Q 𝑄)))
86 simprlr 527 . . 3 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝑄 +Q 𝑄) <Q 𝑃)
87 ltrelnq 7166 . . . . . 6 <Q ⊆ (Q × Q)
8887brel 4586 . . . . 5 ((𝑄 +Q 𝑄) <Q 𝑃 → ((𝑄 +Q 𝑄) ∈ Q𝑃Q))
8986, 88syl 14 . . . 4 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ((𝑄 +Q 𝑄) ∈ Q𝑃Q))
90 ltanqg 7201 . . . . 5 (((𝑄 +Q 𝑄) ∈ Q𝑃Q𝐴Q) → ((𝑄 +Q 𝑄) <Q 𝑃 ↔ (𝐴 +Q (𝑄 +Q 𝑄)) <Q (𝐴 +Q 𝑃)))
91903expa 1181 . . . 4 ((((𝑄 +Q 𝑄) ∈ Q𝑃Q) ∧ 𝐴Q) → ((𝑄 +Q 𝑄) <Q 𝑃 ↔ (𝐴 +Q (𝑄 +Q 𝑄)) <Q (𝐴 +Q 𝑃)))
9289, 23, 91syl2anc 408 . . 3 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → ((𝑄 +Q 𝑄) <Q 𝑃 ↔ (𝐴 +Q (𝑄 +Q 𝑄)) <Q (𝐴 +Q 𝑃)))
9386, 92mpbid 146 . 2 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → (𝐴 +Q (𝑄 +Q 𝑄)) <Q (𝐴 +Q 𝑃))
9485, 93eqbrtrd 3945 1 (((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 <Q (𝐴 +Q 𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wne 2306  c0 3358  cop 3525   class class class wbr 3924  ωcom 4499   × cxp 4532  (class class class)co 5767  1oc1o 6299  2oc2o 6300   +o coa 6303  [cec 6420   / cqs 6421  Ncnpi 7073   ~Q ceq 7080  Qcnq 7081   +Q cplq 7083   ·Q cmq 7084   <Q cltq 7086   ~Q0 ceq0 7087  Q0cnq0 7088   +Q0 cplq0 7090   ·Q0 cmq0 7091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-ltnqqs 7154  df-enq0 7225  df-nq0 7226  df-plq0 7228  df-mq0 7229
This theorem is referenced by:  prarloc  7304
  Copyright terms: Public domain W3C validator