![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulclpi | GIF version |
Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
mulclpi | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulpiord 7379 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | |
2 | pinn 7371 | . . . 4 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
3 | pinn 7371 | . . . 4 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
4 | nnmcl 6536 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω) | |
5 | 2, 3, 4 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) ∈ ω) |
6 | elni2 7376 | . . . . . . 7 ⊢ (𝐵 ∈ N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) | |
7 | 6 | simprbi 275 | . . . . . 6 ⊢ (𝐵 ∈ N → ∅ ∈ 𝐵) |
8 | 7 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ∅ ∈ 𝐵) |
9 | 3 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 𝐵 ∈ ω) |
10 | 2 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 𝐴 ∈ ω) |
11 | elni2 7376 | . . . . . . . 8 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴)) | |
12 | 11 | simprbi 275 | . . . . . . 7 ⊢ (𝐴 ∈ N → ∅ ∈ 𝐴) |
13 | 12 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ∅ ∈ 𝐴) |
14 | nnmordi 6571 | . . . . . 6 ⊢ (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))) | |
15 | 9, 10, 13, 14 | syl21anc 1248 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))) |
16 | 8, 15 | mpd 13 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)) |
17 | ne0i 3454 | . . . 4 ⊢ ((𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝐵) ≠ ∅) | |
18 | 16, 17 | syl 14 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) ≠ ∅) |
19 | elni 7370 | . . 3 ⊢ ((𝐴 ·o 𝐵) ∈ N ↔ ((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐵) ≠ ∅)) | |
20 | 5, 18, 19 | sylanbrc 417 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) ∈ N) |
21 | 1, 20 | eqeltrd 2270 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ≠ wne 2364 ∅c0 3447 ωcom 4623 (class class class)co 5919 ·o comu 6469 Ncnpi 7334 ·N cmi 7336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-oadd 6475 df-omul 6476 df-ni 7366 df-mi 7368 |
This theorem is referenced by: mulasspig 7394 distrpig 7395 ltmpig 7401 enqer 7420 enqdc 7423 addcmpblnq 7429 mulcmpblnq 7430 addpipqqslem 7431 mulpipq2 7433 mulpipqqs 7435 ordpipqqs 7436 addclnq 7437 mulclnq 7438 addcomnqg 7443 addassnqg 7444 mulassnqg 7446 mulcanenq 7447 distrnqg 7449 recexnq 7452 nqtri3or 7458 ltdcnq 7459 ltsonq 7460 ltanqg 7462 ltmnqg 7463 1lt2nq 7468 ltexnqq 7470 archnqq 7479 addcmpblnq0 7505 mulcmpblnq0 7506 mulcanenq0ec 7507 addclnq0 7513 mulclnq0 7514 nqpnq0nq 7515 nqnq0a 7516 nqnq0m 7517 nq0m0r 7518 distrnq0 7521 addassnq0lemcl 7523 |
Copyright terms: Public domain | W3C validator |