| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulclpi | GIF version | ||
| Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| mulclpi | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulpiord 7512 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | |
| 2 | pinn 7504 | . . . 4 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 3 | pinn 7504 | . . . 4 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
| 4 | nnmcl 6635 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω) | |
| 5 | 2, 3, 4 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) ∈ ω) |
| 6 | elni2 7509 | . . . . . . 7 ⊢ (𝐵 ∈ N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) | |
| 7 | 6 | simprbi 275 | . . . . . 6 ⊢ (𝐵 ∈ N → ∅ ∈ 𝐵) |
| 8 | 7 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ∅ ∈ 𝐵) |
| 9 | 3 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 𝐵 ∈ ω) |
| 10 | 2 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 𝐴 ∈ ω) |
| 11 | elni2 7509 | . . . . . . . 8 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴)) | |
| 12 | 11 | simprbi 275 | . . . . . . 7 ⊢ (𝐴 ∈ N → ∅ ∈ 𝐴) |
| 13 | 12 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ∅ ∈ 𝐴) |
| 14 | nnmordi 6670 | . . . . . 6 ⊢ (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))) | |
| 15 | 9, 10, 13, 14 | syl21anc 1270 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))) |
| 16 | 8, 15 | mpd 13 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)) |
| 17 | ne0i 3498 | . . . 4 ⊢ ((𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝐵) ≠ ∅) | |
| 18 | 16, 17 | syl 14 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) ≠ ∅) |
| 19 | elni 7503 | . . 3 ⊢ ((𝐴 ·o 𝐵) ∈ N ↔ ((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐵) ≠ ∅)) | |
| 20 | 5, 18, 19 | sylanbrc 417 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) ∈ N) |
| 21 | 1, 20 | eqeltrd 2306 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ≠ wne 2400 ∅c0 3491 ωcom 4682 (class class class)co 6007 ·o comu 6566 Ncnpi 7467 ·N cmi 7469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-oadd 6572 df-omul 6573 df-ni 7499 df-mi 7501 |
| This theorem is referenced by: mulasspig 7527 distrpig 7528 ltmpig 7534 enqer 7553 enqdc 7556 addcmpblnq 7562 mulcmpblnq 7563 addpipqqslem 7564 mulpipq2 7566 mulpipqqs 7568 ordpipqqs 7569 addclnq 7570 mulclnq 7571 addcomnqg 7576 addassnqg 7577 mulassnqg 7579 mulcanenq 7580 distrnqg 7582 recexnq 7585 nqtri3or 7591 ltdcnq 7592 ltsonq 7593 ltanqg 7595 ltmnqg 7596 1lt2nq 7601 ltexnqq 7603 archnqq 7612 addcmpblnq0 7638 mulcmpblnq0 7639 mulcanenq0ec 7640 addclnq0 7646 mulclnq0 7647 nqpnq0nq 7648 nqnq0a 7649 nqnq0m 7650 nq0m0r 7651 distrnq0 7654 addassnq0lemcl 7656 |
| Copyright terms: Public domain | W3C validator |