ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulclpi GIF version

Theorem mulclpi 7269
Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.)
Assertion
Ref Expression
mulclpi ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)

Proof of Theorem mulclpi
StepHypRef Expression
1 mulpiord 7258 . 2 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
2 pinn 7250 . . . 4 (𝐴N𝐴 ∈ ω)
3 pinn 7250 . . . 4 (𝐵N𝐵 ∈ ω)
4 nnmcl 6449 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
52, 3, 4syl2an 287 . . 3 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ∈ ω)
6 elni2 7255 . . . . . . 7 (𝐵N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵))
76simprbi 273 . . . . . 6 (𝐵N → ∅ ∈ 𝐵)
87adantl 275 . . . . 5 ((𝐴N𝐵N) → ∅ ∈ 𝐵)
93adantl 275 . . . . . 6 ((𝐴N𝐵N) → 𝐵 ∈ ω)
102adantr 274 . . . . . 6 ((𝐴N𝐵N) → 𝐴 ∈ ω)
11 elni2 7255 . . . . . . . 8 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
1211simprbi 273 . . . . . . 7 (𝐴N → ∅ ∈ 𝐴)
1312adantr 274 . . . . . 6 ((𝐴N𝐵N) → ∅ ∈ 𝐴)
14 nnmordi 6484 . . . . . 6 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
159, 10, 13, 14syl21anc 1227 . . . . 5 ((𝐴N𝐵N) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
168, 15mpd 13 . . . 4 ((𝐴N𝐵N) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))
17 ne0i 3415 . . . 4 ((𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝐵) ≠ ∅)
1816, 17syl 14 . . 3 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ≠ ∅)
19 elni 7249 . . 3 ((𝐴 ·o 𝐵) ∈ N ↔ ((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐵) ≠ ∅))
205, 18, 19sylanbrc 414 . 2 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ∈ N)
211, 20eqeltrd 2243 1 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2136  wne 2336  c0 3409  ωcom 4567  (class class class)co 5842   ·o comu 6382  Ncnpi 7213   ·N cmi 7215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389  df-ni 7245  df-mi 7247
This theorem is referenced by:  mulasspig  7273  distrpig  7274  ltmpig  7280  enqer  7299  enqdc  7302  addcmpblnq  7308  mulcmpblnq  7309  addpipqqslem  7310  mulpipq2  7312  mulpipqqs  7314  ordpipqqs  7315  addclnq  7316  mulclnq  7317  addcomnqg  7322  addassnqg  7323  mulassnqg  7325  mulcanenq  7326  distrnqg  7328  recexnq  7331  nqtri3or  7337  ltdcnq  7338  ltsonq  7339  ltanqg  7341  ltmnqg  7342  1lt2nq  7347  ltexnqq  7349  archnqq  7358  addcmpblnq0  7384  mulcmpblnq0  7385  mulcanenq0ec  7386  addclnq0  7392  mulclnq0  7393  nqpnq0nq  7394  nqnq0a  7395  nqnq0m  7396  nq0m0r  7397  distrnq0  7400  addassnq0lemcl  7402
  Copyright terms: Public domain W3C validator