| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulclpi | GIF version | ||
| Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| mulclpi | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulpiord 7401 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | |
| 2 | pinn 7393 | . . . 4 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 3 | pinn 7393 | . . . 4 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
| 4 | nnmcl 6548 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω) | |
| 5 | 2, 3, 4 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) ∈ ω) |
| 6 | elni2 7398 | . . . . . . 7 ⊢ (𝐵 ∈ N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) | |
| 7 | 6 | simprbi 275 | . . . . . 6 ⊢ (𝐵 ∈ N → ∅ ∈ 𝐵) |
| 8 | 7 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ∅ ∈ 𝐵) |
| 9 | 3 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 𝐵 ∈ ω) |
| 10 | 2 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 𝐴 ∈ ω) |
| 11 | elni2 7398 | . . . . . . . 8 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴)) | |
| 12 | 11 | simprbi 275 | . . . . . . 7 ⊢ (𝐴 ∈ N → ∅ ∈ 𝐴) |
| 13 | 12 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ∅ ∈ 𝐴) |
| 14 | nnmordi 6583 | . . . . . 6 ⊢ (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))) | |
| 15 | 9, 10, 13, 14 | syl21anc 1248 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))) |
| 16 | 8, 15 | mpd 13 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)) |
| 17 | ne0i 3458 | . . . 4 ⊢ ((𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝐵) ≠ ∅) | |
| 18 | 16, 17 | syl 14 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) ≠ ∅) |
| 19 | elni 7392 | . . 3 ⊢ ((𝐴 ·o 𝐵) ∈ N ↔ ((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐵) ≠ ∅)) | |
| 20 | 5, 18, 19 | sylanbrc 417 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) ∈ N) |
| 21 | 1, 20 | eqeltrd 2273 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ≠ wne 2367 ∅c0 3451 ωcom 4627 (class class class)co 5925 ·o comu 6481 Ncnpi 7356 ·N cmi 7358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-oadd 6487 df-omul 6488 df-ni 7388 df-mi 7390 |
| This theorem is referenced by: mulasspig 7416 distrpig 7417 ltmpig 7423 enqer 7442 enqdc 7445 addcmpblnq 7451 mulcmpblnq 7452 addpipqqslem 7453 mulpipq2 7455 mulpipqqs 7457 ordpipqqs 7458 addclnq 7459 mulclnq 7460 addcomnqg 7465 addassnqg 7466 mulassnqg 7468 mulcanenq 7469 distrnqg 7471 recexnq 7474 nqtri3or 7480 ltdcnq 7481 ltsonq 7482 ltanqg 7484 ltmnqg 7485 1lt2nq 7490 ltexnqq 7492 archnqq 7501 addcmpblnq0 7527 mulcmpblnq0 7528 mulcanenq0ec 7529 addclnq0 7535 mulclnq0 7536 nqpnq0nq 7537 nqnq0a 7538 nqnq0m 7539 nq0m0r 7540 distrnq0 7543 addassnq0lemcl 7545 |
| Copyright terms: Public domain | W3C validator |