| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulclpi | GIF version | ||
| Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| mulclpi | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulpiord 7472 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | |
| 2 | pinn 7464 | . . . 4 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 3 | pinn 7464 | . . . 4 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
| 4 | nnmcl 6597 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω) | |
| 5 | 2, 3, 4 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) ∈ ω) |
| 6 | elni2 7469 | . . . . . . 7 ⊢ (𝐵 ∈ N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) | |
| 7 | 6 | simprbi 275 | . . . . . 6 ⊢ (𝐵 ∈ N → ∅ ∈ 𝐵) |
| 8 | 7 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ∅ ∈ 𝐵) |
| 9 | 3 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 𝐵 ∈ ω) |
| 10 | 2 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 𝐴 ∈ ω) |
| 11 | elni2 7469 | . . . . . . . 8 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴)) | |
| 12 | 11 | simprbi 275 | . . . . . . 7 ⊢ (𝐴 ∈ N → ∅ ∈ 𝐴) |
| 13 | 12 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ∅ ∈ 𝐴) |
| 14 | nnmordi 6632 | . . . . . 6 ⊢ (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))) | |
| 15 | 9, 10, 13, 14 | syl21anc 1251 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))) |
| 16 | 8, 15 | mpd 13 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)) |
| 17 | ne0i 3478 | . . . 4 ⊢ ((𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝐵) ≠ ∅) | |
| 18 | 16, 17 | syl 14 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) ≠ ∅) |
| 19 | elni 7463 | . . 3 ⊢ ((𝐴 ·o 𝐵) ∈ N ↔ ((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐵) ≠ ∅)) | |
| 20 | 5, 18, 19 | sylanbrc 417 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) ∈ N) |
| 21 | 1, 20 | eqeltrd 2286 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2180 ≠ wne 2380 ∅c0 3471 ωcom 4659 (class class class)co 5974 ·o comu 6530 Ncnpi 7427 ·N cmi 7429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-oadd 6536 df-omul 6537 df-ni 7459 df-mi 7461 |
| This theorem is referenced by: mulasspig 7487 distrpig 7488 ltmpig 7494 enqer 7513 enqdc 7516 addcmpblnq 7522 mulcmpblnq 7523 addpipqqslem 7524 mulpipq2 7526 mulpipqqs 7528 ordpipqqs 7529 addclnq 7530 mulclnq 7531 addcomnqg 7536 addassnqg 7537 mulassnqg 7539 mulcanenq 7540 distrnqg 7542 recexnq 7545 nqtri3or 7551 ltdcnq 7552 ltsonq 7553 ltanqg 7555 ltmnqg 7556 1lt2nq 7561 ltexnqq 7563 archnqq 7572 addcmpblnq0 7598 mulcmpblnq0 7599 mulcanenq0ec 7600 addclnq0 7606 mulclnq0 7607 nqpnq0nq 7608 nqnq0a 7609 nqnq0m 7610 nq0m0r 7611 distrnq0 7614 addassnq0lemcl 7616 |
| Copyright terms: Public domain | W3C validator |