ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulclpi GIF version

Theorem mulclpi 7523
Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.)
Assertion
Ref Expression
mulclpi ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)

Proof of Theorem mulclpi
StepHypRef Expression
1 mulpiord 7512 . 2 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
2 pinn 7504 . . . 4 (𝐴N𝐴 ∈ ω)
3 pinn 7504 . . . 4 (𝐵N𝐵 ∈ ω)
4 nnmcl 6635 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
52, 3, 4syl2an 289 . . 3 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ∈ ω)
6 elni2 7509 . . . . . . 7 (𝐵N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵))
76simprbi 275 . . . . . 6 (𝐵N → ∅ ∈ 𝐵)
87adantl 277 . . . . 5 ((𝐴N𝐵N) → ∅ ∈ 𝐵)
93adantl 277 . . . . . 6 ((𝐴N𝐵N) → 𝐵 ∈ ω)
102adantr 276 . . . . . 6 ((𝐴N𝐵N) → 𝐴 ∈ ω)
11 elni2 7509 . . . . . . . 8 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
1211simprbi 275 . . . . . . 7 (𝐴N → ∅ ∈ 𝐴)
1312adantr 276 . . . . . 6 ((𝐴N𝐵N) → ∅ ∈ 𝐴)
14 nnmordi 6670 . . . . . 6 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
159, 10, 13, 14syl21anc 1270 . . . . 5 ((𝐴N𝐵N) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
168, 15mpd 13 . . . 4 ((𝐴N𝐵N) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))
17 ne0i 3498 . . . 4 ((𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝐵) ≠ ∅)
1816, 17syl 14 . . 3 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ≠ ∅)
19 elni 7503 . . 3 ((𝐴 ·o 𝐵) ∈ N ↔ ((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐵) ≠ ∅))
205, 18, 19sylanbrc 417 . 2 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ∈ N)
211, 20eqeltrd 2306 1 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  wne 2400  c0 3491  ωcom 4682  (class class class)co 6007   ·o comu 6566  Ncnpi 7467   ·N cmi 7469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-oadd 6572  df-omul 6573  df-ni 7499  df-mi 7501
This theorem is referenced by:  mulasspig  7527  distrpig  7528  ltmpig  7534  enqer  7553  enqdc  7556  addcmpblnq  7562  mulcmpblnq  7563  addpipqqslem  7564  mulpipq2  7566  mulpipqqs  7568  ordpipqqs  7569  addclnq  7570  mulclnq  7571  addcomnqg  7576  addassnqg  7577  mulassnqg  7579  mulcanenq  7580  distrnqg  7582  recexnq  7585  nqtri3or  7591  ltdcnq  7592  ltsonq  7593  ltanqg  7595  ltmnqg  7596  1lt2nq  7601  ltexnqq  7603  archnqq  7612  addcmpblnq0  7638  mulcmpblnq0  7639  mulcanenq0ec  7640  addclnq0  7646  mulclnq0  7647  nqpnq0nq  7648  nqnq0a  7649  nqnq0m  7650  nq0m0r  7651  distrnq0  7654  addassnq0lemcl  7656
  Copyright terms: Public domain W3C validator