ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulclpi GIF version

Theorem mulclpi 7388
Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.)
Assertion
Ref Expression
mulclpi ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)

Proof of Theorem mulclpi
StepHypRef Expression
1 mulpiord 7377 . 2 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
2 pinn 7369 . . . 4 (𝐴N𝐴 ∈ ω)
3 pinn 7369 . . . 4 (𝐵N𝐵 ∈ ω)
4 nnmcl 6534 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
52, 3, 4syl2an 289 . . 3 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ∈ ω)
6 elni2 7374 . . . . . . 7 (𝐵N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵))
76simprbi 275 . . . . . 6 (𝐵N → ∅ ∈ 𝐵)
87adantl 277 . . . . 5 ((𝐴N𝐵N) → ∅ ∈ 𝐵)
93adantl 277 . . . . . 6 ((𝐴N𝐵N) → 𝐵 ∈ ω)
102adantr 276 . . . . . 6 ((𝐴N𝐵N) → 𝐴 ∈ ω)
11 elni2 7374 . . . . . . . 8 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
1211simprbi 275 . . . . . . 7 (𝐴N → ∅ ∈ 𝐴)
1312adantr 276 . . . . . 6 ((𝐴N𝐵N) → ∅ ∈ 𝐴)
14 nnmordi 6569 . . . . . 6 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
159, 10, 13, 14syl21anc 1248 . . . . 5 ((𝐴N𝐵N) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
168, 15mpd 13 . . . 4 ((𝐴N𝐵N) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))
17 ne0i 3453 . . . 4 ((𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝐵) ≠ ∅)
1816, 17syl 14 . . 3 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ≠ ∅)
19 elni 7368 . . 3 ((𝐴 ·o 𝐵) ∈ N ↔ ((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐵) ≠ ∅))
205, 18, 19sylanbrc 417 . 2 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ∈ N)
211, 20eqeltrd 2270 1 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  wne 2364  c0 3446  ωcom 4622  (class class class)co 5918   ·o comu 6467  Ncnpi 7332   ·N cmi 7334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-oadd 6473  df-omul 6474  df-ni 7364  df-mi 7366
This theorem is referenced by:  mulasspig  7392  distrpig  7393  ltmpig  7399  enqer  7418  enqdc  7421  addcmpblnq  7427  mulcmpblnq  7428  addpipqqslem  7429  mulpipq2  7431  mulpipqqs  7433  ordpipqqs  7434  addclnq  7435  mulclnq  7436  addcomnqg  7441  addassnqg  7442  mulassnqg  7444  mulcanenq  7445  distrnqg  7447  recexnq  7450  nqtri3or  7456  ltdcnq  7457  ltsonq  7458  ltanqg  7460  ltmnqg  7461  1lt2nq  7466  ltexnqq  7468  archnqq  7477  addcmpblnq0  7503  mulcmpblnq0  7504  mulcanenq0ec  7505  addclnq0  7511  mulclnq0  7512  nqpnq0nq  7513  nqnq0a  7514  nqnq0m  7515  nq0m0r  7516  distrnq0  7519  addassnq0lemcl  7521
  Copyright terms: Public domain W3C validator