ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulclpi GIF version

Theorem mulclpi 7483
Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.)
Assertion
Ref Expression
mulclpi ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)

Proof of Theorem mulclpi
StepHypRef Expression
1 mulpiord 7472 . 2 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
2 pinn 7464 . . . 4 (𝐴N𝐴 ∈ ω)
3 pinn 7464 . . . 4 (𝐵N𝐵 ∈ ω)
4 nnmcl 6597 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
52, 3, 4syl2an 289 . . 3 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ∈ ω)
6 elni2 7469 . . . . . . 7 (𝐵N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵))
76simprbi 275 . . . . . 6 (𝐵N → ∅ ∈ 𝐵)
87adantl 277 . . . . 5 ((𝐴N𝐵N) → ∅ ∈ 𝐵)
93adantl 277 . . . . . 6 ((𝐴N𝐵N) → 𝐵 ∈ ω)
102adantr 276 . . . . . 6 ((𝐴N𝐵N) → 𝐴 ∈ ω)
11 elni2 7469 . . . . . . . 8 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
1211simprbi 275 . . . . . . 7 (𝐴N → ∅ ∈ 𝐴)
1312adantr 276 . . . . . 6 ((𝐴N𝐵N) → ∅ ∈ 𝐴)
14 nnmordi 6632 . . . . . 6 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
159, 10, 13, 14syl21anc 1251 . . . . 5 ((𝐴N𝐵N) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
168, 15mpd 13 . . . 4 ((𝐴N𝐵N) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))
17 ne0i 3478 . . . 4 ((𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝐵) ≠ ∅)
1816, 17syl 14 . . 3 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ≠ ∅)
19 elni 7463 . . 3 ((𝐴 ·o 𝐵) ∈ N ↔ ((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐵) ≠ ∅))
205, 18, 19sylanbrc 417 . 2 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ∈ N)
211, 20eqeltrd 2286 1 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2180  wne 2380  c0 3471  ωcom 4659  (class class class)co 5974   ·o comu 6530  Ncnpi 7427   ·N cmi 7429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-oadd 6536  df-omul 6537  df-ni 7459  df-mi 7461
This theorem is referenced by:  mulasspig  7487  distrpig  7488  ltmpig  7494  enqer  7513  enqdc  7516  addcmpblnq  7522  mulcmpblnq  7523  addpipqqslem  7524  mulpipq2  7526  mulpipqqs  7528  ordpipqqs  7529  addclnq  7530  mulclnq  7531  addcomnqg  7536  addassnqg  7537  mulassnqg  7539  mulcanenq  7540  distrnqg  7542  recexnq  7545  nqtri3or  7551  ltdcnq  7552  ltsonq  7553  ltanqg  7555  ltmnqg  7556  1lt2nq  7561  ltexnqq  7563  archnqq  7572  addcmpblnq0  7598  mulcmpblnq0  7599  mulcanenq0ec  7600  addclnq0  7606  mulclnq0  7607  nqpnq0nq  7608  nqnq0a  7609  nqnq0m  7610  nq0m0r  7611  distrnq0  7614  addassnq0lemcl  7616
  Copyright terms: Public domain W3C validator