| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulclpi | GIF version | ||
| Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| mulclpi | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulpiord 7437 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | |
| 2 | pinn 7429 | . . . 4 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 3 | pinn 7429 | . . . 4 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
| 4 | nnmcl 6574 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω) | |
| 5 | 2, 3, 4 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) ∈ ω) |
| 6 | elni2 7434 | . . . . . . 7 ⊢ (𝐵 ∈ N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) | |
| 7 | 6 | simprbi 275 | . . . . . 6 ⊢ (𝐵 ∈ N → ∅ ∈ 𝐵) |
| 8 | 7 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ∅ ∈ 𝐵) |
| 9 | 3 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 𝐵 ∈ ω) |
| 10 | 2 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 𝐴 ∈ ω) |
| 11 | elni2 7434 | . . . . . . . 8 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴)) | |
| 12 | 11 | simprbi 275 | . . . . . . 7 ⊢ (𝐴 ∈ N → ∅ ∈ 𝐴) |
| 13 | 12 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ∅ ∈ 𝐴) |
| 14 | nnmordi 6609 | . . . . . 6 ⊢ (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))) | |
| 15 | 9, 10, 13, 14 | syl21anc 1249 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))) |
| 16 | 8, 15 | mpd 13 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)) |
| 17 | ne0i 3468 | . . . 4 ⊢ ((𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝐵) ≠ ∅) | |
| 18 | 16, 17 | syl 14 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) ≠ ∅) |
| 19 | elni 7428 | . . 3 ⊢ ((𝐴 ·o 𝐵) ∈ N ↔ ((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐵) ≠ ∅)) | |
| 20 | 5, 18, 19 | sylanbrc 417 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) ∈ N) |
| 21 | 1, 20 | eqeltrd 2283 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ≠ wne 2377 ∅c0 3461 ωcom 4642 (class class class)co 5951 ·o comu 6507 Ncnpi 7392 ·N cmi 7394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-oadd 6513 df-omul 6514 df-ni 7424 df-mi 7426 |
| This theorem is referenced by: mulasspig 7452 distrpig 7453 ltmpig 7459 enqer 7478 enqdc 7481 addcmpblnq 7487 mulcmpblnq 7488 addpipqqslem 7489 mulpipq2 7491 mulpipqqs 7493 ordpipqqs 7494 addclnq 7495 mulclnq 7496 addcomnqg 7501 addassnqg 7502 mulassnqg 7504 mulcanenq 7505 distrnqg 7507 recexnq 7510 nqtri3or 7516 ltdcnq 7517 ltsonq 7518 ltanqg 7520 ltmnqg 7521 1lt2nq 7526 ltexnqq 7528 archnqq 7537 addcmpblnq0 7563 mulcmpblnq0 7564 mulcanenq0ec 7565 addclnq0 7571 mulclnq0 7572 nqpnq0nq 7573 nqnq0a 7574 nqnq0m 7575 nq0m0r 7576 distrnq0 7579 addassnq0lemcl 7581 |
| Copyright terms: Public domain | W3C validator |