Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pinn | GIF version |
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) |
Ref | Expression |
---|---|
pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 7266 | . . 3 ⊢ N = (ω ∖ {∅}) | |
2 | difss 3253 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
3 | 1, 2 | eqsstri 3179 | . 2 ⊢ N ⊆ ω |
4 | 3 | sseli 3143 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ∖ cdif 3118 ∅c0 3414 {csn 3583 ωcom 4574 Ncnpi 7234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-ni 7266 |
This theorem is referenced by: pion 7272 piord 7273 elni2 7276 mulidpi 7280 ltsopi 7282 pitric 7283 pitri3or 7284 ltdcpi 7285 addclpi 7289 mulclpi 7290 addcompig 7291 addasspig 7292 mulcompig 7293 mulasspig 7294 distrpig 7295 addcanpig 7296 mulcanpig 7297 addnidpig 7298 ltexpi 7299 ltapig 7300 ltmpig 7301 nnppipi 7305 enqdc 7323 archnqq 7379 prarloclemarch2 7381 enq0enq 7393 enq0sym 7394 enq0ref 7395 enq0tr 7396 nqnq0pi 7400 nqnq0 7403 addcmpblnq0 7405 mulcmpblnq0 7406 mulcanenq0ec 7407 addclnq0 7413 nqpnq0nq 7415 nqnq0a 7416 nqnq0m 7417 nq0m0r 7418 nq0a0 7419 nnanq0 7420 distrnq0 7421 mulcomnq0 7422 addassnq0lemcl 7423 addassnq0 7424 nq02m 7427 prarloclemlt 7455 prarloclemn 7461 |
Copyright terms: Public domain | W3C validator |