| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pinn | GIF version | ||
| Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) |
| Ref | Expression |
|---|---|
| pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 7437 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 2 | difss 3303 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 3 | 1, 2 | eqsstri 3229 | . 2 ⊢ N ⊆ ω |
| 4 | 3 | sseli 3193 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ∖ cdif 3167 ∅c0 3464 {csn 3638 ωcom 4646 Ncnpi 7405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 df-ni 7437 |
| This theorem is referenced by: pion 7443 piord 7444 elni2 7447 mulidpi 7451 ltsopi 7453 pitric 7454 pitri3or 7455 ltdcpi 7456 addclpi 7460 mulclpi 7461 addcompig 7462 addasspig 7463 mulcompig 7464 mulasspig 7465 distrpig 7466 addcanpig 7467 mulcanpig 7468 addnidpig 7469 ltexpi 7470 ltapig 7471 ltmpig 7472 nnppipi 7476 enqdc 7494 archnqq 7550 prarloclemarch2 7552 enq0enq 7564 enq0sym 7565 enq0ref 7566 enq0tr 7567 nqnq0pi 7571 nqnq0 7574 addcmpblnq0 7576 mulcmpblnq0 7577 mulcanenq0ec 7578 addclnq0 7584 nqpnq0nq 7586 nqnq0a 7587 nqnq0m 7588 nq0m0r 7589 nq0a0 7590 nnanq0 7591 distrnq0 7592 mulcomnq0 7593 addassnq0lemcl 7594 addassnq0 7595 nq02m 7598 prarloclemlt 7626 prarloclemn 7632 |
| Copyright terms: Public domain | W3C validator |