| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pinn | GIF version | ||
| Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) |
| Ref | Expression |
|---|---|
| pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 7390 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 2 | difss 3290 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 3 | 1, 2 | eqsstri 3216 | . 2 ⊢ N ⊆ ω |
| 4 | 3 | sseli 3180 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∖ cdif 3154 ∅c0 3451 {csn 3623 ωcom 4627 Ncnpi 7358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-ni 7390 |
| This theorem is referenced by: pion 7396 piord 7397 elni2 7400 mulidpi 7404 ltsopi 7406 pitric 7407 pitri3or 7408 ltdcpi 7409 addclpi 7413 mulclpi 7414 addcompig 7415 addasspig 7416 mulcompig 7417 mulasspig 7418 distrpig 7419 addcanpig 7420 mulcanpig 7421 addnidpig 7422 ltexpi 7423 ltapig 7424 ltmpig 7425 nnppipi 7429 enqdc 7447 archnqq 7503 prarloclemarch2 7505 enq0enq 7517 enq0sym 7518 enq0ref 7519 enq0tr 7520 nqnq0pi 7524 nqnq0 7527 addcmpblnq0 7529 mulcmpblnq0 7530 mulcanenq0ec 7531 addclnq0 7537 nqpnq0nq 7539 nqnq0a 7540 nqnq0m 7541 nq0m0r 7542 nq0a0 7543 nnanq0 7544 distrnq0 7545 mulcomnq0 7546 addassnq0lemcl 7547 addassnq0 7548 nq02m 7551 prarloclemlt 7579 prarloclemn 7585 |
| Copyright terms: Public domain | W3C validator |