![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pinn | GIF version |
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) |
Ref | Expression |
---|---|
pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 7366 | . . 3 ⊢ N = (ω ∖ {∅}) | |
2 | difss 3286 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
3 | 1, 2 | eqsstri 3212 | . 2 ⊢ N ⊆ ω |
4 | 3 | sseli 3176 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∖ cdif 3151 ∅c0 3447 {csn 3619 ωcom 4623 Ncnpi 7334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 df-in 3160 df-ss 3167 df-ni 7366 |
This theorem is referenced by: pion 7372 piord 7373 elni2 7376 mulidpi 7380 ltsopi 7382 pitric 7383 pitri3or 7384 ltdcpi 7385 addclpi 7389 mulclpi 7390 addcompig 7391 addasspig 7392 mulcompig 7393 mulasspig 7394 distrpig 7395 addcanpig 7396 mulcanpig 7397 addnidpig 7398 ltexpi 7399 ltapig 7400 ltmpig 7401 nnppipi 7405 enqdc 7423 archnqq 7479 prarloclemarch2 7481 enq0enq 7493 enq0sym 7494 enq0ref 7495 enq0tr 7496 nqnq0pi 7500 nqnq0 7503 addcmpblnq0 7505 mulcmpblnq0 7506 mulcanenq0ec 7507 addclnq0 7513 nqpnq0nq 7515 nqnq0a 7516 nqnq0m 7517 nq0m0r 7518 nq0a0 7519 nnanq0 7520 distrnq0 7521 mulcomnq0 7522 addassnq0lemcl 7523 addassnq0 7524 nq02m 7527 prarloclemlt 7555 prarloclemn 7561 |
Copyright terms: Public domain | W3C validator |