| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pinn | GIF version | ||
| Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) |
| Ref | Expression |
|---|---|
| pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 7487 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 2 | difss 3330 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 3 | 1, 2 | eqsstri 3256 | . 2 ⊢ N ⊆ ω |
| 4 | 3 | sseli 3220 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∖ cdif 3194 ∅c0 3491 {csn 3666 ωcom 4681 Ncnpi 7455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-ni 7487 |
| This theorem is referenced by: pion 7493 piord 7494 elni2 7497 mulidpi 7501 ltsopi 7503 pitric 7504 pitri3or 7505 ltdcpi 7506 addclpi 7510 mulclpi 7511 addcompig 7512 addasspig 7513 mulcompig 7514 mulasspig 7515 distrpig 7516 addcanpig 7517 mulcanpig 7518 addnidpig 7519 ltexpi 7520 ltapig 7521 ltmpig 7522 nnppipi 7526 enqdc 7544 archnqq 7600 prarloclemarch2 7602 enq0enq 7614 enq0sym 7615 enq0ref 7616 enq0tr 7617 nqnq0pi 7621 nqnq0 7624 addcmpblnq0 7626 mulcmpblnq0 7627 mulcanenq0ec 7628 addclnq0 7634 nqpnq0nq 7636 nqnq0a 7637 nqnq0m 7638 nq0m0r 7639 nq0a0 7640 nnanq0 7641 distrnq0 7642 mulcomnq0 7643 addassnq0lemcl 7644 addassnq0 7645 nq02m 7648 prarloclemlt 7676 prarloclemn 7682 |
| Copyright terms: Public domain | W3C validator |