| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pinn | GIF version | ||
| Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) |
| Ref | Expression |
|---|---|
| pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 7373 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 2 | difss 3290 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 3 | 1, 2 | eqsstri 3216 | . 2 ⊢ N ⊆ ω |
| 4 | 3 | sseli 3180 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∖ cdif 3154 ∅c0 3451 {csn 3623 ωcom 4627 Ncnpi 7341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-ni 7373 |
| This theorem is referenced by: pion 7379 piord 7380 elni2 7383 mulidpi 7387 ltsopi 7389 pitric 7390 pitri3or 7391 ltdcpi 7392 addclpi 7396 mulclpi 7397 addcompig 7398 addasspig 7399 mulcompig 7400 mulasspig 7401 distrpig 7402 addcanpig 7403 mulcanpig 7404 addnidpig 7405 ltexpi 7406 ltapig 7407 ltmpig 7408 nnppipi 7412 enqdc 7430 archnqq 7486 prarloclemarch2 7488 enq0enq 7500 enq0sym 7501 enq0ref 7502 enq0tr 7503 nqnq0pi 7507 nqnq0 7510 addcmpblnq0 7512 mulcmpblnq0 7513 mulcanenq0ec 7514 addclnq0 7520 nqpnq0nq 7522 nqnq0a 7523 nqnq0m 7524 nq0m0r 7525 nq0a0 7526 nnanq0 7527 distrnq0 7528 mulcomnq0 7529 addassnq0lemcl 7530 addassnq0 7531 nq02m 7534 prarloclemlt 7562 prarloclemn 7568 |
| Copyright terms: Public domain | W3C validator |