![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pinn | GIF version |
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) |
Ref | Expression |
---|---|
pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 7364 | . . 3 ⊢ N = (ω ∖ {∅}) | |
2 | difss 3285 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
3 | 1, 2 | eqsstri 3211 | . 2 ⊢ N ⊆ ω |
4 | 3 | sseli 3175 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∖ cdif 3150 ∅c0 3446 {csn 3618 ωcom 4622 Ncnpi 7332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-ni 7364 |
This theorem is referenced by: pion 7370 piord 7371 elni2 7374 mulidpi 7378 ltsopi 7380 pitric 7381 pitri3or 7382 ltdcpi 7383 addclpi 7387 mulclpi 7388 addcompig 7389 addasspig 7390 mulcompig 7391 mulasspig 7392 distrpig 7393 addcanpig 7394 mulcanpig 7395 addnidpig 7396 ltexpi 7397 ltapig 7398 ltmpig 7399 nnppipi 7403 enqdc 7421 archnqq 7477 prarloclemarch2 7479 enq0enq 7491 enq0sym 7492 enq0ref 7493 enq0tr 7494 nqnq0pi 7498 nqnq0 7501 addcmpblnq0 7503 mulcmpblnq0 7504 mulcanenq0ec 7505 addclnq0 7511 nqpnq0nq 7513 nqnq0a 7514 nqnq0m 7515 nq0m0r 7516 nq0a0 7517 nnanq0 7518 distrnq0 7519 mulcomnq0 7520 addassnq0lemcl 7521 addassnq0 7522 nq02m 7525 prarloclemlt 7553 prarloclemn 7559 |
Copyright terms: Public domain | W3C validator |