| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pinn | GIF version | ||
| Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) |
| Ref | Expression |
|---|---|
| pinn | ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 7399 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 2 | difss 3298 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 3 | 1, 2 | eqsstri 3224 | . 2 ⊢ N ⊆ ω |
| 4 | 3 | sseli 3188 | 1 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ∖ cdif 3162 ∅c0 3459 {csn 3632 ωcom 4636 Ncnpi 7367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 df-in 3171 df-ss 3178 df-ni 7399 |
| This theorem is referenced by: pion 7405 piord 7406 elni2 7409 mulidpi 7413 ltsopi 7415 pitric 7416 pitri3or 7417 ltdcpi 7418 addclpi 7422 mulclpi 7423 addcompig 7424 addasspig 7425 mulcompig 7426 mulasspig 7427 distrpig 7428 addcanpig 7429 mulcanpig 7430 addnidpig 7431 ltexpi 7432 ltapig 7433 ltmpig 7434 nnppipi 7438 enqdc 7456 archnqq 7512 prarloclemarch2 7514 enq0enq 7526 enq0sym 7527 enq0ref 7528 enq0tr 7529 nqnq0pi 7533 nqnq0 7536 addcmpblnq0 7538 mulcmpblnq0 7539 mulcanenq0ec 7540 addclnq0 7546 nqpnq0nq 7548 nqnq0a 7549 nqnq0m 7550 nq0m0r 7551 nq0a0 7552 nnanq0 7553 distrnq0 7554 mulcomnq0 7555 addassnq0lemcl 7556 addassnq0 7557 nq02m 7560 prarloclemlt 7588 prarloclemn 7594 |
| Copyright terms: Public domain | W3C validator |