ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1nsgtrivd GIF version

Theorem 1nsgtrivd 13751
Description: A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
1nsgtrivd.1 𝐵 = (Base‘𝐺)
1nsgtrivd.2 0 = (0g𝐺)
1nsgtrivd.3 (𝜑𝐺 ∈ Grp)
1nsgtrivd.4 (𝜑 → (NrmSGrp‘𝐺) ≈ 1o)
Assertion
Ref Expression
1nsgtrivd (𝜑𝐵 = { 0 })

Proof of Theorem 1nsgtrivd
StepHypRef Expression
1 1nsgtrivd.3 . . . 4 (𝜑𝐺 ∈ Grp)
2 1nsgtrivd.1 . . . . 5 𝐵 = (Base‘𝐺)
32nsgid 13747 . . . 4 (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺))
41, 3syl 14 . . 3 (𝜑𝐵 ∈ (NrmSGrp‘𝐺))
5 1nsgtrivd.2 . . . . . 6 0 = (0g𝐺)
650nsg 13746 . . . . 5 (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺))
71, 6syl 14 . . . 4 (𝜑 → { 0 } ∈ (NrmSGrp‘𝐺))
8 1nsgtrivd.4 . . . 4 (𝜑 → (NrmSGrp‘𝐺) ≈ 1o)
9 en1eqsn 7111 . . . 4 (({ 0 } ∈ (NrmSGrp‘𝐺) ∧ (NrmSGrp‘𝐺) ≈ 1o) → (NrmSGrp‘𝐺) = {{ 0 }})
107, 8, 9syl2anc 411 . . 3 (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }})
114, 10eleqtrd 2308 . 2 (𝜑𝐵 ∈ {{ 0 }})
127elexd 2813 . . 3 (𝜑 → { 0 } ∈ V)
13 elsn2g 3699 . . 3 ({ 0 } ∈ V → (𝐵 ∈ {{ 0 }} ↔ 𝐵 = { 0 }))
1412, 13syl 14 . 2 (𝜑 → (𝐵 ∈ {{ 0 }} ↔ 𝐵 = { 0 }))
1511, 14mpbid 147 1 (𝜑𝐵 = { 0 })
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wcel 2200  Vcvv 2799  {csn 3666   class class class wbr 4082  cfv 5317  1oc1o 6553  cen 6883  Basecbs 13027  0gc0g 13284  Grpcgrp 13528  NrmSGrpcnsg 13700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-1o 6560  df-er 6678  df-en 6886  df-fin 6888  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-submnd 13488  df-grp 13531  df-minusg 13532  df-sbg 13533  df-subg 13702  df-nsg 13703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator