| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nsgtrivd | GIF version | ||
| Description: A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| 1nsgtrivd.1 | ⊢ 𝐵 = (Base‘𝐺) |
| 1nsgtrivd.2 | ⊢ 0 = (0g‘𝐺) |
| 1nsgtrivd.3 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 1nsgtrivd.4 | ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 1o) |
| Ref | Expression |
|---|---|
| 1nsgtrivd | ⊢ (𝜑 → 𝐵 = { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nsgtrivd.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | 1nsgtrivd.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | 2 | nsgid 13522 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺)) |
| 4 | 1, 3 | syl 14 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (NrmSGrp‘𝐺)) |
| 5 | 1nsgtrivd.2 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
| 6 | 5 | 0nsg 13521 | . . . . 5 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺)) |
| 7 | 1, 6 | syl 14 | . . . 4 ⊢ (𝜑 → { 0 } ∈ (NrmSGrp‘𝐺)) |
| 8 | 1nsgtrivd.4 | . . . 4 ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 1o) | |
| 9 | en1eqsn 7049 | . . . 4 ⊢ (({ 0 } ∈ (NrmSGrp‘𝐺) ∧ (NrmSGrp‘𝐺) ≈ 1o) → (NrmSGrp‘𝐺) = {{ 0 }}) | |
| 10 | 7, 8, 9 | syl2anc 411 | . . 3 ⊢ (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }}) |
| 11 | 4, 10 | eleqtrd 2283 | . 2 ⊢ (𝜑 → 𝐵 ∈ {{ 0 }}) |
| 12 | 7 | elexd 2784 | . . 3 ⊢ (𝜑 → { 0 } ∈ V) |
| 13 | elsn2g 3665 | . . 3 ⊢ ({ 0 } ∈ V → (𝐵 ∈ {{ 0 }} ↔ 𝐵 = { 0 })) | |
| 14 | 12, 13 | syl 14 | . 2 ⊢ (𝜑 → (𝐵 ∈ {{ 0 }} ↔ 𝐵 = { 0 })) |
| 15 | 11, 14 | mpbid 147 | 1 ⊢ (𝜑 → 𝐵 = { 0 }) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∈ wcel 2175 Vcvv 2771 {csn 3632 class class class wbr 4043 ‘cfv 5270 1oc1o 6494 ≈ cen 6824 Basecbs 12803 0gc0g 13059 Grpcgrp 13303 NrmSGrpcnsg 13475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-1o 6501 df-er 6619 df-en 6827 df-fin 6829 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-ndx 12806 df-slot 12807 df-base 12809 df-sets 12810 df-iress 12811 df-plusg 12893 df-0g 13061 df-mgm 13159 df-sgrp 13205 df-mnd 13220 df-submnd 13263 df-grp 13306 df-minusg 13307 df-sbg 13308 df-subg 13477 df-nsg 13478 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |