ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1nsgtrivd GIF version

Theorem 1nsgtrivd 13640
Description: A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
1nsgtrivd.1 𝐵 = (Base‘𝐺)
1nsgtrivd.2 0 = (0g𝐺)
1nsgtrivd.3 (𝜑𝐺 ∈ Grp)
1nsgtrivd.4 (𝜑 → (NrmSGrp‘𝐺) ≈ 1o)
Assertion
Ref Expression
1nsgtrivd (𝜑𝐵 = { 0 })

Proof of Theorem 1nsgtrivd
StepHypRef Expression
1 1nsgtrivd.3 . . . 4 (𝜑𝐺 ∈ Grp)
2 1nsgtrivd.1 . . . . 5 𝐵 = (Base‘𝐺)
32nsgid 13636 . . . 4 (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺))
41, 3syl 14 . . 3 (𝜑𝐵 ∈ (NrmSGrp‘𝐺))
5 1nsgtrivd.2 . . . . . 6 0 = (0g𝐺)
650nsg 13635 . . . . 5 (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺))
71, 6syl 14 . . . 4 (𝜑 → { 0 } ∈ (NrmSGrp‘𝐺))
8 1nsgtrivd.4 . . . 4 (𝜑 → (NrmSGrp‘𝐺) ≈ 1o)
9 en1eqsn 7071 . . . 4 (({ 0 } ∈ (NrmSGrp‘𝐺) ∧ (NrmSGrp‘𝐺) ≈ 1o) → (NrmSGrp‘𝐺) = {{ 0 }})
107, 8, 9syl2anc 411 . . 3 (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }})
114, 10eleqtrd 2285 . 2 (𝜑𝐵 ∈ {{ 0 }})
127elexd 2787 . . 3 (𝜑 → { 0 } ∈ V)
13 elsn2g 3671 . . 3 ({ 0 } ∈ V → (𝐵 ∈ {{ 0 }} ↔ 𝐵 = { 0 }))
1412, 13syl 14 . 2 (𝜑 → (𝐵 ∈ {{ 0 }} ↔ 𝐵 = { 0 }))
1511, 14mpbid 147 1 (𝜑𝐵 = { 0 })
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  Vcvv 2773  {csn 3638   class class class wbr 4054  cfv 5285  1oc1o 6513  cen 6843  Basecbs 12917  0gc0g 13173  Grpcgrp 13417  NrmSGrpcnsg 13589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-1o 6520  df-er 6638  df-en 6846  df-fin 6848  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-inn 9067  df-2 9125  df-ndx 12920  df-slot 12921  df-base 12923  df-sets 12924  df-iress 12925  df-plusg 13007  df-0g 13175  df-mgm 13273  df-sgrp 13319  df-mnd 13334  df-submnd 13377  df-grp 13420  df-minusg 13421  df-sbg 13422  df-subg 13591  df-nsg 13592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator