![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1nsgtrivd | GIF version |
Description: A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
1nsgtrivd.1 | ⊢ 𝐵 = (Base‘𝐺) |
1nsgtrivd.2 | ⊢ 0 = (0g‘𝐺) |
1nsgtrivd.3 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
1nsgtrivd.4 | ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 1o) |
Ref | Expression |
---|---|
1nsgtrivd | ⊢ (𝜑 → 𝐵 = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nsgtrivd.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | 1nsgtrivd.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 2 | nsgid 13288 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺)) |
4 | 1, 3 | syl 14 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (NrmSGrp‘𝐺)) |
5 | 1nsgtrivd.2 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
6 | 5 | 0nsg 13287 | . . . . 5 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺)) |
7 | 1, 6 | syl 14 | . . . 4 ⊢ (𝜑 → { 0 } ∈ (NrmSGrp‘𝐺)) |
8 | 1nsgtrivd.4 | . . . 4 ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 1o) | |
9 | en1eqsn 7009 | . . . 4 ⊢ (({ 0 } ∈ (NrmSGrp‘𝐺) ∧ (NrmSGrp‘𝐺) ≈ 1o) → (NrmSGrp‘𝐺) = {{ 0 }}) | |
10 | 7, 8, 9 | syl2anc 411 | . . 3 ⊢ (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }}) |
11 | 4, 10 | eleqtrd 2272 | . 2 ⊢ (𝜑 → 𝐵 ∈ {{ 0 }}) |
12 | 7 | elexd 2773 | . . 3 ⊢ (𝜑 → { 0 } ∈ V) |
13 | elsn2g 3652 | . . 3 ⊢ ({ 0 } ∈ V → (𝐵 ∈ {{ 0 }} ↔ 𝐵 = { 0 })) | |
14 | 12, 13 | syl 14 | . 2 ⊢ (𝜑 → (𝐵 ∈ {{ 0 }} ↔ 𝐵 = { 0 })) |
15 | 11, 14 | mpbid 147 | 1 ⊢ (𝜑 → 𝐵 = { 0 }) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 {csn 3619 class class class wbr 4030 ‘cfv 5255 1oc1o 6464 ≈ cen 6794 Basecbs 12621 0gc0g 12870 Grpcgrp 13075 NrmSGrpcnsg 13241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-1o 6471 df-er 6589 df-en 6797 df-fin 6799 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-submnd 13035 df-grp 13078 df-minusg 13079 df-sbg 13080 df-subg 13243 df-nsg 13244 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |