![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzp1 | GIF version |
Description: Append an element to a finite set of sequential integers. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzp1 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzsuc 9544 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) | |
2 | 1 | eleq2d 2158 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ 𝐾 ∈ ((𝑀...𝑁) ∪ {(𝑁 + 1)}))) |
3 | elun 3142 | . . 3 ⊢ (𝐾 ∈ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 ∈ {(𝑁 + 1)})) | |
4 | eluzelz 9089 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
5 | 4 | peano2zd 8932 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ ℤ) |
6 | elsn2g 3481 | . . . . 5 ⊢ ((𝑁 + 1) ∈ ℤ → (𝐾 ∈ {(𝑁 + 1)} ↔ 𝐾 = (𝑁 + 1))) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ {(𝑁 + 1)} ↔ 𝐾 = (𝑁 + 1))) |
8 | 7 | orbi2d 740 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 ∈ {(𝑁 + 1)}) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1)))) |
9 | 3, 8 | syl5bb 191 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1)))) |
10 | 2, 9 | bitrd 187 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 665 = wceq 1290 ∈ wcel 1439 ∪ cun 2998 {csn 3450 ‘cfv 5028 (class class class)co 5666 1c1 7412 + caddc 7414 ℤcz 8811 ℤ≥cuz 9080 ...cfz 9485 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-cnex 7497 ax-resscn 7498 ax-1cn 7499 ax-1re 7500 ax-icn 7501 ax-addcl 7502 ax-addrcl 7503 ax-mulcl 7504 ax-addcom 7506 ax-addass 7508 ax-distr 7510 ax-i2m1 7511 ax-0lt1 7512 ax-0id 7514 ax-rnegex 7515 ax-cnre 7517 ax-pre-ltirr 7518 ax-pre-ltwlin 7519 ax-pre-lttrn 7520 ax-pre-apti 7521 ax-pre-ltadd 7522 |
This theorem depends on definitions: df-bi 116 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2622 df-sbc 2842 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-br 3852 df-opab 3906 df-mpt 3907 df-id 4129 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-rn 4463 df-res 4464 df-ima 4465 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-pnf 7585 df-mnf 7586 df-xr 7587 df-ltxr 7588 df-le 7589 df-sub 7716 df-neg 7717 df-inn 8484 df-n0 8735 df-z 8812 df-uz 9081 df-fz 9486 |
This theorem is referenced by: fzpr 9552 fzm1 9575 |
Copyright terms: Public domain | W3C validator |