ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvimulf GIF version

Theorem dvimulf 14331
Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dviaddf.x (𝜑𝑋𝑆)
dvaddf.f (𝜑𝐹:𝑋⟶ℂ)
dvaddf.g (𝜑𝐺:𝑋⟶ℂ)
dvaddf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvaddf.dg (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dvimulf (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)) = (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 + ((𝑆 D 𝐺) ∘𝑓 · 𝐹)))

Proof of Theorem dvimulf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvaddf.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
21adantr 276 . . . 4 ((𝜑𝑥𝑋) → 𝐹:𝑋⟶ℂ)
3 dviaddf.x . . . . 5 (𝜑𝑋𝑆)
43adantr 276 . . . 4 ((𝜑𝑥𝑋) → 𝑋𝑆)
5 dvaddf.g . . . . 5 (𝜑𝐺:𝑋⟶ℂ)
65adantr 276 . . . 4 ((𝜑𝑥𝑋) → 𝐺:𝑋⟶ℂ)
7 dvaddf.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
87adantr 276 . . . 4 ((𝜑𝑥𝑋) → 𝑆 ∈ {ℝ, ℂ})
9 dvaddf.df . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
109eleq2d 2247 . . . . 5 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥𝑋))
1110biimpar 297 . . . 4 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹))
12 dvaddf.dg . . . . . 6 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
1312eleq2d 2247 . . . . 5 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥𝑋))
1413biimpar 297 . . . 4 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺))
152, 4, 6, 8, 11, 14dvmulxx 14329 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝑥) = ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
1615mpteq2dva 4095 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑆 D (𝐹𝑓 · 𝐺))‘𝑥)) = (𝑥𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))))
17 cnex 7938 . . . . . . 7 ℂ ∈ V
1817a1i 9 . . . . . 6 (𝜑 → ℂ ∈ V)
19 mulcl 7941 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
2019adantl 277 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
217, 3ssexd 4145 . . . . . . 7 (𝜑𝑋 ∈ V)
22 inidm 3346 . . . . . . 7 (𝑋𝑋) = 𝑋
2320, 1, 5, 21, 21, 22off 6098 . . . . . 6 (𝜑 → (𝐹𝑓 · 𝐺):𝑋⟶ℂ)
24 elpm2r 6669 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹𝑓 · 𝐺):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆))
2518, 7, 23, 3, 24syl22anc 1239 . . . . 5 (𝜑 → (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆))
26 dvfgg 14318 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝐹𝑓 · 𝐺)):dom (𝑆 D (𝐹𝑓 · 𝐺))⟶ℂ)
277, 25, 26syl2anc 411 . . . 4 (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)):dom (𝑆 D (𝐹𝑓 · 𝐺))⟶ℂ)
28 recnprss 14317 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
297, 28syl 14 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
3029, 23, 3dvbss 14315 . . . . . 6 (𝜑 → dom (𝑆 D (𝐹𝑓 · 𝐺)) ⊆ 𝑋)
31 reldvg 14309 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D (𝐹𝑓 · 𝐺)))
3229, 25, 31syl2anc 411 . . . . . . . 8 (𝜑 → Rel (𝑆 D (𝐹𝑓 · 𝐺)))
3332adantr 276 . . . . . . 7 ((𝜑𝑥𝑋) → Rel (𝑆 D (𝐹𝑓 · 𝐺)))
3429adantr 276 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑆 ⊆ ℂ)
35 elpm2r 6669 . . . . . . . . . . . . 13 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
3618, 7, 1, 3, 35syl22anc 1239 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
37 dvfgg 14318 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
387, 36, 37syl2anc 411 . . . . . . . . . . 11 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
39 ffun 5370 . . . . . . . . . . 11 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
40 funfvbrb 5632 . . . . . . . . . . 11 (Fun (𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4138, 39, 403syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4241adantr 276 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4311, 42mpbid 147 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))
44 elpm2r 6669 . . . . . . . . . . . . 13 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆))
4518, 7, 5, 3, 44syl22anc 1239 . . . . . . . . . . . 12 (𝜑𝐺 ∈ (ℂ ↑pm 𝑆))
46 dvfgg 14318 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
477, 45, 46syl2anc 411 . . . . . . . . . . 11 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
48 ffun 5370 . . . . . . . . . . 11 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
49 funfvbrb 5632 . . . . . . . . . . 11 (Fun (𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5047, 48, 493syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5150adantr 276 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5214, 51mpbid 147 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))
53 eqid 2177 . . . . . . . 8 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
542, 4, 6, 34, 43, 52, 53dvmulxxbr 14327 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥(𝑆 D (𝐹𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
55 releldm 4864 . . . . . . 7 ((Rel (𝑆 D (𝐹𝑓 · 𝐺)) ∧ 𝑥(𝑆 D (𝐹𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))) → 𝑥 ∈ dom (𝑆 D (𝐹𝑓 · 𝐺)))
5633, 54, 55syl2anc 411 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹𝑓 · 𝐺)))
5730, 56eqelssd 3176 . . . . 5 (𝜑 → dom (𝑆 D (𝐹𝑓 · 𝐺)) = 𝑋)
5857feq2d 5355 . . . 4 (𝜑 → ((𝑆 D (𝐹𝑓 · 𝐺)):dom (𝑆 D (𝐹𝑓 · 𝐺))⟶ℂ ↔ (𝑆 D (𝐹𝑓 · 𝐺)):𝑋⟶ℂ))
5927, 58mpbid 147 . . 3 (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)):𝑋⟶ℂ)
6059feqmptd 5572 . 2 (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)) = (𝑥𝑋 ↦ ((𝑆 D (𝐹𝑓 · 𝐺))‘𝑥)))
619feq2d 5355 . . . . . 6 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
6238, 61mpbid 147 . . . . 5 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
6362ffvelcdmda 5654 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ)
645ffvelcdmda 5654 . . . 4 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℂ)
6563, 64mulcld 7981 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) ∈ ℂ)
6612feq2d 5355 . . . . . 6 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
6747, 66mpbid 147 . . . . 5 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
6867ffvelcdmda 5654 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ ℂ)
691ffvelcdmda 5654 . . . 4 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
7068, 69mulcld 7981 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)) ∈ ℂ)
7162feqmptd 5572 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
725feqmptd 5572 . . . 4 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
7321, 63, 64, 71, 72offval2 6101 . . 3 (𝜑 → ((𝑆 D 𝐹) ∘𝑓 · 𝐺) = (𝑥𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥))))
7467feqmptd 5572 . . . 4 (𝜑 → (𝑆 D 𝐺) = (𝑥𝑋 ↦ ((𝑆 D 𝐺)‘𝑥)))
751feqmptd 5572 . . . 4 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
7621, 68, 69, 74, 75offval2 6101 . . 3 (𝜑 → ((𝑆 D 𝐺) ∘𝑓 · 𝐹) = (𝑥𝑋 ↦ (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
7721, 65, 70, 73, 76offval2 6101 . 2 (𝜑 → (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 + ((𝑆 D 𝐺) ∘𝑓 · 𝐹)) = (𝑥𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))))
7816, 60, 773eqtr4d 2220 1 (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)) = (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 + ((𝑆 D 𝐺) ∘𝑓 · 𝐹)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  Vcvv 2739  wss 3131  {cpr 3595   class class class wbr 4005  cmpt 4066  dom cdm 4628  ccom 4632  Rel wrel 4633  Fun wfun 5212  wf 5214  cfv 5218  (class class class)co 5878  𝑓 cof 6084  pm cpm 6652  cc 7812  cr 7813   + caddc 7817   · cmul 7819  cmin 8131  abscabs 11009  MetOpencmopn 13592   D cdv 14285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934  ax-addf 7936  ax-mulf 7937
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-of 6086  df-1st 6144  df-2nd 6145  df-recs 6309  df-frec 6395  df-map 6653  df-pm 6654  df-sup 6986  df-inf 6987  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-xneg 9775  df-xadd 9776  df-seqfrec 10449  df-exp 10523  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-rest 12696  df-topgen 12715  df-psmet 13594  df-xmet 13595  df-met 13596  df-bl 13597  df-mopn 13598  df-top 13659  df-topon 13672  df-bases 13704  df-ntr 13757  df-cn 13849  df-cnp 13850  df-tx 13914  df-cncf 14219  df-limced 14286  df-dvap 14287
This theorem is referenced by:  dvexp  14336  dvmptmulx  14343
  Copyright terms: Public domain W3C validator