ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvimulf GIF version

Theorem dvimulf 12745
Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dviaddf.x (𝜑𝑋𝑆)
dvaddf.f (𝜑𝐹:𝑋⟶ℂ)
dvaddf.g (𝜑𝐺:𝑋⟶ℂ)
dvaddf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvaddf.dg (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dvimulf (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)) = (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 + ((𝑆 D 𝐺) ∘𝑓 · 𝐹)))

Proof of Theorem dvimulf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvaddf.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
21adantr 272 . . . 4 ((𝜑𝑥𝑋) → 𝐹:𝑋⟶ℂ)
3 dviaddf.x . . . . 5 (𝜑𝑋𝑆)
43adantr 272 . . . 4 ((𝜑𝑥𝑋) → 𝑋𝑆)
5 dvaddf.g . . . . 5 (𝜑𝐺:𝑋⟶ℂ)
65adantr 272 . . . 4 ((𝜑𝑥𝑋) → 𝐺:𝑋⟶ℂ)
7 dvaddf.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
87adantr 272 . . . 4 ((𝜑𝑥𝑋) → 𝑆 ∈ {ℝ, ℂ})
9 dvaddf.df . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
109eleq2d 2185 . . . . 5 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥𝑋))
1110biimpar 293 . . . 4 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹))
12 dvaddf.dg . . . . . 6 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
1312eleq2d 2185 . . . . 5 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥𝑋))
1413biimpar 293 . . . 4 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺))
152, 4, 6, 8, 11, 14dvmulxx 12743 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝑥) = ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
1615mpteq2dva 3986 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑆 D (𝐹𝑓 · 𝐺))‘𝑥)) = (𝑥𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))))
17 cnex 7708 . . . . . . 7 ℂ ∈ V
1817a1i 9 . . . . . 6 (𝜑 → ℂ ∈ V)
19 mulcl 7711 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
2019adantl 273 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
217, 3ssexd 4036 . . . . . . 7 (𝜑𝑋 ∈ V)
22 inidm 3253 . . . . . . 7 (𝑋𝑋) = 𝑋
2320, 1, 5, 21, 21, 22off 5960 . . . . . 6 (𝜑 → (𝐹𝑓 · 𝐺):𝑋⟶ℂ)
24 elpm2r 6526 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹𝑓 · 𝐺):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆))
2518, 7, 23, 3, 24syl22anc 1200 . . . . 5 (𝜑 → (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆))
26 dvfgg 12732 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝐹𝑓 · 𝐺)):dom (𝑆 D (𝐹𝑓 · 𝐺))⟶ℂ)
277, 25, 26syl2anc 406 . . . 4 (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)):dom (𝑆 D (𝐹𝑓 · 𝐺))⟶ℂ)
28 recnprss 12731 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
297, 28syl 14 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
3029, 23, 3dvbss 12729 . . . . . 6 (𝜑 → dom (𝑆 D (𝐹𝑓 · 𝐺)) ⊆ 𝑋)
31 reldvg 12723 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D (𝐹𝑓 · 𝐺)))
3229, 25, 31syl2anc 406 . . . . . . . 8 (𝜑 → Rel (𝑆 D (𝐹𝑓 · 𝐺)))
3332adantr 272 . . . . . . 7 ((𝜑𝑥𝑋) → Rel (𝑆 D (𝐹𝑓 · 𝐺)))
3429adantr 272 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑆 ⊆ ℂ)
35 elpm2r 6526 . . . . . . . . . . . . 13 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
3618, 7, 1, 3, 35syl22anc 1200 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
37 dvfgg 12732 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
387, 36, 37syl2anc 406 . . . . . . . . . . 11 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
39 ffun 5243 . . . . . . . . . . 11 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
40 funfvbrb 5499 . . . . . . . . . . 11 (Fun (𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4138, 39, 403syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4241adantr 272 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4311, 42mpbid 146 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))
44 elpm2r 6526 . . . . . . . . . . . . 13 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆))
4518, 7, 5, 3, 44syl22anc 1200 . . . . . . . . . . . 12 (𝜑𝐺 ∈ (ℂ ↑pm 𝑆))
46 dvfgg 12732 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
477, 45, 46syl2anc 406 . . . . . . . . . . 11 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
48 ffun 5243 . . . . . . . . . . 11 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
49 funfvbrb 5499 . . . . . . . . . . 11 (Fun (𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5047, 48, 493syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5150adantr 272 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5214, 51mpbid 146 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))
53 eqid 2115 . . . . . . . 8 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
542, 4, 6, 34, 43, 52, 53dvmulxxbr 12741 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥(𝑆 D (𝐹𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
55 releldm 4742 . . . . . . 7 ((Rel (𝑆 D (𝐹𝑓 · 𝐺)) ∧ 𝑥(𝑆 D (𝐹𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))) → 𝑥 ∈ dom (𝑆 D (𝐹𝑓 · 𝐺)))
5633, 54, 55syl2anc 406 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹𝑓 · 𝐺)))
5730, 56eqelssd 3084 . . . . 5 (𝜑 → dom (𝑆 D (𝐹𝑓 · 𝐺)) = 𝑋)
5857feq2d 5228 . . . 4 (𝜑 → ((𝑆 D (𝐹𝑓 · 𝐺)):dom (𝑆 D (𝐹𝑓 · 𝐺))⟶ℂ ↔ (𝑆 D (𝐹𝑓 · 𝐺)):𝑋⟶ℂ))
5927, 58mpbid 146 . . 3 (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)):𝑋⟶ℂ)
6059feqmptd 5440 . 2 (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)) = (𝑥𝑋 ↦ ((𝑆 D (𝐹𝑓 · 𝐺))‘𝑥)))
619feq2d 5228 . . . . . 6 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
6238, 61mpbid 146 . . . . 5 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
6362ffvelrnda 5521 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ)
645ffvelrnda 5521 . . . 4 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℂ)
6563, 64mulcld 7750 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) ∈ ℂ)
6612feq2d 5228 . . . . . 6 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
6747, 66mpbid 146 . . . . 5 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
6867ffvelrnda 5521 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ ℂ)
691ffvelrnda 5521 . . . 4 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
7068, 69mulcld 7750 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)) ∈ ℂ)
7162feqmptd 5440 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
725feqmptd 5440 . . . 4 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
7321, 63, 64, 71, 72offval2 5963 . . 3 (𝜑 → ((𝑆 D 𝐹) ∘𝑓 · 𝐺) = (𝑥𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥))))
7467feqmptd 5440 . . . 4 (𝜑 → (𝑆 D 𝐺) = (𝑥𝑋 ↦ ((𝑆 D 𝐺)‘𝑥)))
751feqmptd 5440 . . . 4 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
7621, 68, 69, 74, 75offval2 5963 . . 3 (𝜑 → ((𝑆 D 𝐺) ∘𝑓 · 𝐹) = (𝑥𝑋 ↦ (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
7721, 65, 70, 73, 76offval2 5963 . 2 (𝜑 → (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 + ((𝑆 D 𝐺) ∘𝑓 · 𝐹)) = (𝑥𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))))
7816, 60, 773eqtr4d 2158 1 (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)) = (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 + ((𝑆 D 𝐺) ∘𝑓 · 𝐹)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1314  wcel 1463  Vcvv 2658  wss 3039  {cpr 3496   class class class wbr 3897  cmpt 3957  dom cdm 4507  ccom 4511  Rel wrel 4512  Fun wfun 5085  wf 5087  cfv 5091  (class class class)co 5740  𝑓 cof 5946  pm cpm 6509  cc 7582  cr 7583   + caddc 7587   · cmul 7589  cmin 7897  abscabs 10720  MetOpencmopn 12060   D cdv 12699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704  ax-addf 7706  ax-mulf 7707
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-isom 5100  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-of 5948  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-map 6510  df-pm 6511  df-sup 6837  df-inf 6838  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8396  df-inn 8681  df-2 8739  df-3 8740  df-4 8741  df-n0 8932  df-z 9009  df-uz 9279  df-q 9364  df-rp 9394  df-xneg 9510  df-xadd 9511  df-seqfrec 10170  df-exp 10244  df-cj 10565  df-re 10566  df-im 10567  df-rsqrt 10721  df-abs 10722  df-rest 12028  df-topgen 12047  df-psmet 12062  df-xmet 12063  df-met 12064  df-bl 12065  df-mopn 12066  df-top 12071  df-topon 12084  df-bases 12116  df-ntr 12171  df-cn 12263  df-cnp 12264  df-tx 12328  df-cncf 12633  df-limced 12700  df-dvap 12701
This theorem is referenced by:  dvexp  12750  dvmptmulx  12757
  Copyright terms: Public domain W3C validator