ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvimulf GIF version

Theorem dvimulf 12839
Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dviaddf.x (𝜑𝑋𝑆)
dvaddf.f (𝜑𝐹:𝑋⟶ℂ)
dvaddf.g (𝜑𝐺:𝑋⟶ℂ)
dvaddf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvaddf.dg (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dvimulf (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)) = (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 + ((𝑆 D 𝐺) ∘𝑓 · 𝐹)))

Proof of Theorem dvimulf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvaddf.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
21adantr 274 . . . 4 ((𝜑𝑥𝑋) → 𝐹:𝑋⟶ℂ)
3 dviaddf.x . . . . 5 (𝜑𝑋𝑆)
43adantr 274 . . . 4 ((𝜑𝑥𝑋) → 𝑋𝑆)
5 dvaddf.g . . . . 5 (𝜑𝐺:𝑋⟶ℂ)
65adantr 274 . . . 4 ((𝜑𝑥𝑋) → 𝐺:𝑋⟶ℂ)
7 dvaddf.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
87adantr 274 . . . 4 ((𝜑𝑥𝑋) → 𝑆 ∈ {ℝ, ℂ})
9 dvaddf.df . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
109eleq2d 2209 . . . . 5 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥𝑋))
1110biimpar 295 . . . 4 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹))
12 dvaddf.dg . . . . . 6 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
1312eleq2d 2209 . . . . 5 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥𝑋))
1413biimpar 295 . . . 4 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺))
152, 4, 6, 8, 11, 14dvmulxx 12837 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝑥) = ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
1615mpteq2dva 4018 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑆 D (𝐹𝑓 · 𝐺))‘𝑥)) = (𝑥𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))))
17 cnex 7744 . . . . . . 7 ℂ ∈ V
1817a1i 9 . . . . . 6 (𝜑 → ℂ ∈ V)
19 mulcl 7747 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
2019adantl 275 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
217, 3ssexd 4068 . . . . . . 7 (𝜑𝑋 ∈ V)
22 inidm 3285 . . . . . . 7 (𝑋𝑋) = 𝑋
2320, 1, 5, 21, 21, 22off 5994 . . . . . 6 (𝜑 → (𝐹𝑓 · 𝐺):𝑋⟶ℂ)
24 elpm2r 6560 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹𝑓 · 𝐺):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆))
2518, 7, 23, 3, 24syl22anc 1217 . . . . 5 (𝜑 → (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆))
26 dvfgg 12826 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝐹𝑓 · 𝐺)):dom (𝑆 D (𝐹𝑓 · 𝐺))⟶ℂ)
277, 25, 26syl2anc 408 . . . 4 (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)):dom (𝑆 D (𝐹𝑓 · 𝐺))⟶ℂ)
28 recnprss 12825 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
297, 28syl 14 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
3029, 23, 3dvbss 12823 . . . . . 6 (𝜑 → dom (𝑆 D (𝐹𝑓 · 𝐺)) ⊆ 𝑋)
31 reldvg 12817 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D (𝐹𝑓 · 𝐺)))
3229, 25, 31syl2anc 408 . . . . . . . 8 (𝜑 → Rel (𝑆 D (𝐹𝑓 · 𝐺)))
3332adantr 274 . . . . . . 7 ((𝜑𝑥𝑋) → Rel (𝑆 D (𝐹𝑓 · 𝐺)))
3429adantr 274 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑆 ⊆ ℂ)
35 elpm2r 6560 . . . . . . . . . . . . 13 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
3618, 7, 1, 3, 35syl22anc 1217 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
37 dvfgg 12826 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
387, 36, 37syl2anc 408 . . . . . . . . . . 11 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
39 ffun 5275 . . . . . . . . . . 11 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
40 funfvbrb 5533 . . . . . . . . . . 11 (Fun (𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4138, 39, 403syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4241adantr 274 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4311, 42mpbid 146 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))
44 elpm2r 6560 . . . . . . . . . . . . 13 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆))
4518, 7, 5, 3, 44syl22anc 1217 . . . . . . . . . . . 12 (𝜑𝐺 ∈ (ℂ ↑pm 𝑆))
46 dvfgg 12826 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
477, 45, 46syl2anc 408 . . . . . . . . . . 11 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
48 ffun 5275 . . . . . . . . . . 11 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
49 funfvbrb 5533 . . . . . . . . . . 11 (Fun (𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5047, 48, 493syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5150adantr 274 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5214, 51mpbid 146 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))
53 eqid 2139 . . . . . . . 8 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
542, 4, 6, 34, 43, 52, 53dvmulxxbr 12835 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥(𝑆 D (𝐹𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
55 releldm 4774 . . . . . . 7 ((Rel (𝑆 D (𝐹𝑓 · 𝐺)) ∧ 𝑥(𝑆 D (𝐹𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))) → 𝑥 ∈ dom (𝑆 D (𝐹𝑓 · 𝐺)))
5633, 54, 55syl2anc 408 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹𝑓 · 𝐺)))
5730, 56eqelssd 3116 . . . . 5 (𝜑 → dom (𝑆 D (𝐹𝑓 · 𝐺)) = 𝑋)
5857feq2d 5260 . . . 4 (𝜑 → ((𝑆 D (𝐹𝑓 · 𝐺)):dom (𝑆 D (𝐹𝑓 · 𝐺))⟶ℂ ↔ (𝑆 D (𝐹𝑓 · 𝐺)):𝑋⟶ℂ))
5927, 58mpbid 146 . . 3 (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)):𝑋⟶ℂ)
6059feqmptd 5474 . 2 (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)) = (𝑥𝑋 ↦ ((𝑆 D (𝐹𝑓 · 𝐺))‘𝑥)))
619feq2d 5260 . . . . . 6 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
6238, 61mpbid 146 . . . . 5 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
6362ffvelrnda 5555 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ)
645ffvelrnda 5555 . . . 4 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℂ)
6563, 64mulcld 7786 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) ∈ ℂ)
6612feq2d 5260 . . . . . 6 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
6747, 66mpbid 146 . . . . 5 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
6867ffvelrnda 5555 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ ℂ)
691ffvelrnda 5555 . . . 4 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
7068, 69mulcld 7786 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)) ∈ ℂ)
7162feqmptd 5474 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
725feqmptd 5474 . . . 4 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
7321, 63, 64, 71, 72offval2 5997 . . 3 (𝜑 → ((𝑆 D 𝐹) ∘𝑓 · 𝐺) = (𝑥𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥))))
7467feqmptd 5474 . . . 4 (𝜑 → (𝑆 D 𝐺) = (𝑥𝑋 ↦ ((𝑆 D 𝐺)‘𝑥)))
751feqmptd 5474 . . . 4 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
7621, 68, 69, 74, 75offval2 5997 . . 3 (𝜑 → ((𝑆 D 𝐺) ∘𝑓 · 𝐹) = (𝑥𝑋 ↦ (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
7721, 65, 70, 73, 76offval2 5997 . 2 (𝜑 → (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 + ((𝑆 D 𝐺) ∘𝑓 · 𝐹)) = (𝑥𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))))
7816, 60, 773eqtr4d 2182 1 (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)) = (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 + ((𝑆 D 𝐺) ∘𝑓 · 𝐹)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  Vcvv 2686  wss 3071  {cpr 3528   class class class wbr 3929  cmpt 3989  dom cdm 4539  ccom 4543  Rel wrel 4544  Fun wfun 5117  wf 5119  cfv 5123  (class class class)co 5774  𝑓 cof 5980  pm cpm 6543  cc 7618  cr 7619   + caddc 7623   · cmul 7625  cmin 7933  abscabs 10769  MetOpencmopn 12154   D cdv 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740  ax-addf 7742  ax-mulf 7743
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pm 6545  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-ntr 12265  df-cn 12357  df-cnp 12358  df-tx 12422  df-cncf 12727  df-limced 12794  df-dvap 12795
This theorem is referenced by:  dvexp  12844  dvmptmulx  12851
  Copyright terms: Public domain W3C validator