Step | Hyp | Ref
| Expression |
1 | | dvaddf.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
2 | 1 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐹:𝑋⟶ℂ) |
3 | | dviaddf.x |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
4 | 3 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑋 ⊆ 𝑆) |
5 | | dvaddf.g |
. . . . 5
⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
6 | 5 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐺:𝑋⟶ℂ) |
7 | | dvaddf.s |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
8 | 7 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑆 ∈ {ℝ, ℂ}) |
9 | | dvaddf.df |
. . . . . 6
⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
10 | 9 | eleq2d 2224 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥 ∈ 𝑋)) |
11 | 10 | biimpar 295 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹)) |
12 | | dvaddf.dg |
. . . . . 6
⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
13 | 12 | eleq2d 2224 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥 ∈ 𝑋)) |
14 | 13 | biimpar 295 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺)) |
15 | 2, 4, 6, 8, 11, 14 | dvmulxx 13007 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D (𝐹 ∘𝑓 · 𝐺))‘𝑥) = ((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)))) |
16 | 15 | mpteq2dva 4050 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑆 D (𝐹 ∘𝑓 · 𝐺))‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))))) |
17 | | cnex 7835 |
. . . . . . 7
⊢ ℂ
∈ V |
18 | 17 | a1i 9 |
. . . . . 6
⊢ (𝜑 → ℂ ∈
V) |
19 | | mulcl 7838 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
20 | 19 | adantl 275 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ) |
21 | 7, 3 | ssexd 4100 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ V) |
22 | | inidm 3312 |
. . . . . . 7
⊢ (𝑋 ∩ 𝑋) = 𝑋 |
23 | 20, 1, 5, 21, 21, 22 | off 6034 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺):𝑋⟶ℂ) |
24 | | elpm2r 6600 |
. . . . . 6
⊢
(((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹 ∘𝑓
· 𝐺):𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → (𝐹 ∘𝑓 · 𝐺) ∈ (ℂ
↑pm 𝑆)) |
25 | 18, 7, 23, 3, 24 | syl22anc 1218 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ (ℂ
↑pm 𝑆)) |
26 | | dvfgg 12996 |
. . . . 5
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
(𝐹
∘𝑓 · 𝐺) ∈ (ℂ ↑pm
𝑆)) → (𝑆 D (𝐹 ∘𝑓 · 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 · 𝐺))⟶ℂ) |
27 | 7, 25, 26 | syl2anc 409 |
. . . 4
⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 · 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 · 𝐺))⟶ℂ) |
28 | | recnprss 12995 |
. . . . . . . 8
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
29 | 7, 28 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
30 | 29, 23, 3 | dvbss 12993 |
. . . . . 6
⊢ (𝜑 → dom (𝑆 D (𝐹 ∘𝑓 · 𝐺)) ⊆ 𝑋) |
31 | | reldvg 12987 |
. . . . . . . . 9
⊢ ((𝑆 ⊆ ℂ ∧ (𝐹 ∘𝑓
· 𝐺) ∈ (ℂ
↑pm 𝑆)) → Rel (𝑆 D (𝐹 ∘𝑓 · 𝐺))) |
32 | 29, 25, 31 | syl2anc 409 |
. . . . . . . 8
⊢ (𝜑 → Rel (𝑆 D (𝐹 ∘𝑓 · 𝐺))) |
33 | 32 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Rel (𝑆 D (𝐹 ∘𝑓 · 𝐺))) |
34 | 29 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑆 ⊆ ℂ) |
35 | | elpm2r 6600 |
. . . . . . . . . . . . 13
⊢
(((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm
𝑆)) |
36 | 18, 7, 1, 3, 35 | syl22anc 1218 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
𝑆)) |
37 | | dvfgg 12996 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
38 | 7, 36, 37 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
39 | | ffun 5315 |
. . . . . . . . . . 11
⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) |
40 | | funfvbrb 5573 |
. . . . . . . . . . 11
⊢ (Fun
(𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))) |
41 | 38, 39, 40 | 3syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))) |
42 | 41 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))) |
43 | 11, 42 | mpbid 146 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)) |
44 | | elpm2r 6600 |
. . . . . . . . . . . . 13
⊢
(((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → 𝐺 ∈ (ℂ ↑pm
𝑆)) |
45 | 18, 7, 5, 3, 44 | syl22anc 1218 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈ (ℂ ↑pm
𝑆)) |
46 | | dvfgg 12996 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐺 ∈ (ℂ
↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
47 | 7, 45, 46 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
48 | | ffun 5315 |
. . . . . . . . . . 11
⊢ ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺)) |
49 | | funfvbrb 5573 |
. . . . . . . . . . 11
⊢ (Fun
(𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))) |
50 | 47, 48, 49 | 3syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))) |
51 | 50 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))) |
52 | 14, 51 | mpbid 146 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)) |
53 | | eqid 2154 |
. . . . . . . 8
⊢
(MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘
− )) |
54 | 2, 4, 6, 34, 43, 52, 53 | dvmulxxbr 13005 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D (𝐹 ∘𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)))) |
55 | | releldm 4814 |
. . . . . . 7
⊢ ((Rel
(𝑆 D (𝐹 ∘𝑓 · 𝐺)) ∧ 𝑥(𝑆 D (𝐹 ∘𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)))) → 𝑥 ∈ dom (𝑆 D (𝐹 ∘𝑓 · 𝐺))) |
56 | 33, 54, 55 | syl2anc 409 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹 ∘𝑓 · 𝐺))) |
57 | 30, 56 | eqelssd 3143 |
. . . . 5
⊢ (𝜑 → dom (𝑆 D (𝐹 ∘𝑓 · 𝐺)) = 𝑋) |
58 | 57 | feq2d 5300 |
. . . 4
⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 · 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 · 𝐺))⟶ℂ ↔ (𝑆 D (𝐹 ∘𝑓 · 𝐺)):𝑋⟶ℂ)) |
59 | 27, 58 | mpbid 146 |
. . 3
⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 · 𝐺)):𝑋⟶ℂ) |
60 | 59 | feqmptd 5514 |
. 2
⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 · 𝐺)) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D (𝐹 ∘𝑓 · 𝐺))‘𝑥))) |
61 | 9 | feq2d 5300 |
. . . . . 6
⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
62 | 38, 61 | mpbid 146 |
. . . . 5
⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
63 | 62 | ffvelrnda 5595 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ) |
64 | 5 | ffvelrnda 5595 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ ℂ) |
65 | 63, 64 | mulcld 7877 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) ∈ ℂ) |
66 | 12 | feq2d 5300 |
. . . . . 6
⊢ (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ)) |
67 | 47, 66 | mpbid 146 |
. . . . 5
⊢ (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ) |
68 | 67 | ffvelrnda 5595 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ ℂ) |
69 | 1 | ffvelrnda 5595 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℂ) |
70 | 68, 69 | mulcld 7877 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)) ∈ ℂ) |
71 | 62 | feqmptd 5514 |
. . . 4
⊢ (𝜑 → (𝑆 D 𝐹) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐹)‘𝑥))) |
72 | 5 | feqmptd 5514 |
. . . 4
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) |
73 | 21, 63, 64, 71, 72 | offval2 6037 |
. . 3
⊢ (𝜑 → ((𝑆 D 𝐹) ∘𝑓 · 𝐺) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)))) |
74 | 67 | feqmptd 5514 |
. . . 4
⊢ (𝜑 → (𝑆 D 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐺)‘𝑥))) |
75 | 1 | feqmptd 5514 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
76 | 21, 68, 69, 74, 75 | offval2 6037 |
. . 3
⊢ (𝜑 → ((𝑆 D 𝐺) ∘𝑓 · 𝐹) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)))) |
77 | 21, 65, 70, 73, 76 | offval2 6037 |
. 2
⊢ (𝜑 → (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 +
((𝑆 D 𝐺) ∘𝑓 · 𝐹)) = (𝑥 ∈ 𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) + (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))))) |
78 | 16, 60, 77 | 3eqtr4d 2197 |
1
⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 · 𝐺)) = (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 +
((𝑆 D 𝐺) ∘𝑓 · 𝐹))) |