ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemrn GIF version

Theorem ennnfonelemrn 12661
Description: Lemma for ennnfone 12667. 𝐿 is onto 𝐴. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfone.l 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
Assertion
Ref Expression
ennnfonelemrn (𝜑 → ran 𝐿 = 𝐴)
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑖,𝐹,𝑗,𝑥,𝑦,𝑘   𝑛,𝐹,𝑘   𝑗,𝐺   𝑖,𝐻,𝑗,𝑥,𝑦,𝑘   𝑗,𝐽   𝑖,𝑁,𝑗,𝑥,𝑦,𝑘   𝜑,𝑖,𝑗,𝑥,𝑦,𝑘   𝑗,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑖,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐻(𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐿(𝑥,𝑦,𝑖,𝑗,𝑘,𝑛)   𝑁(𝑛)

Proof of Theorem ennnfonelemrn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . 4 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . 4 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . 4 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . 4 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . 4 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . 4 𝐻 = seq0(𝐺, 𝐽)
8 ennnfone.l . . . 4 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemf1 12660 . . 3 (𝜑𝐿:dom 𝐿1-1𝐴)
10 f1f 5466 . . 3 (𝐿:dom 𝐿1-1𝐴𝐿:dom 𝐿𝐴)
11 frn 5419 . . 3 (𝐿:dom 𝐿𝐴 → ran 𝐿𝐴)
129, 10, 113syl 17 . 2 (𝜑 → ran 𝐿𝐴)
13 foelrn 5802 . . . . . 6 ((𝐹:ω–onto𝐴𝑤𝐴) → ∃𝑗 ∈ ω 𝑤 = (𝐹𝑗))
142, 13sylan 283 . . . . 5 ((𝜑𝑤𝐴) → ∃𝑗 ∈ ω 𝑤 = (𝐹𝑗))
15 0zd 9355 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → 0 ∈ ℤ)
16 simprl 529 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → 𝑗 ∈ ω)
17 peano2 4632 . . . . . . . . 9 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
1816, 17syl 14 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → suc 𝑗 ∈ ω)
1915, 5, 18frec2uzuzd 10511 . . . . . . 7 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → (𝑁‘suc 𝑗) ∈ (ℤ‘0))
20 nn0uz 9653 . . . . . . 7 0 = (ℤ‘0)
2119, 20eleqtrrdi 2290 . . . . . 6 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → (𝑁‘suc 𝑗) ∈ ℕ0)
22 fofn 5485 . . . . . . . . . 10 (𝐹:ω–onto𝐴𝐹 Fn ω)
232, 22syl 14 . . . . . . . . 9 (𝜑𝐹 Fn ω)
2423ad2antrr 488 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → 𝐹 Fn ω)
25 ordom 4644 . . . . . . . . 9 Ord ω
26 ordsucss 4541 . . . . . . . . 9 (Ord ω → (𝑗 ∈ ω → suc 𝑗 ⊆ ω))
2725, 16, 26mpsyl 65 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → suc 𝑗 ⊆ ω)
28 vex 2766 . . . . . . . . . 10 𝑗 ∈ V
2928sucid 4453 . . . . . . . . 9 𝑗 ∈ suc 𝑗
3029a1i 9 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → 𝑗 ∈ suc 𝑗)
31 fnfvima 5800 . . . . . . . 8 ((𝐹 Fn ω ∧ suc 𝑗 ⊆ ω ∧ 𝑗 ∈ suc 𝑗) → (𝐹𝑗) ∈ (𝐹 “ suc 𝑗))
3224, 27, 30, 31syl3anc 1249 . . . . . . 7 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → (𝐹𝑗) ∈ (𝐹 “ suc 𝑗))
33 simprr 531 . . . . . . 7 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → 𝑤 = (𝐹𝑗))
3415, 5frec2uzf1od 10515 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → 𝑁:ω–1-1-onto→(ℤ‘0))
35 f1ocnvfv1 5827 . . . . . . . . 9 ((𝑁:ω–1-1-onto→(ℤ‘0) ∧ suc 𝑗 ∈ ω) → (𝑁‘(𝑁‘suc 𝑗)) = suc 𝑗)
3634, 18, 35syl2anc 411 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → (𝑁‘(𝑁‘suc 𝑗)) = suc 𝑗)
3736imaeq2d 5010 . . . . . . 7 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → (𝐹 “ (𝑁‘(𝑁‘suc 𝑗))) = (𝐹 “ suc 𝑗))
3832, 33, 373eltr4d 2280 . . . . . 6 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → 𝑤 ∈ (𝐹 “ (𝑁‘(𝑁‘suc 𝑗))))
39 fveq2 5561 . . . . . . . . 9 (𝑖 = (𝑁‘suc 𝑗) → (𝑁𝑖) = (𝑁‘(𝑁‘suc 𝑗)))
4039imaeq2d 5010 . . . . . . . 8 (𝑖 = (𝑁‘suc 𝑗) → (𝐹 “ (𝑁𝑖)) = (𝐹 “ (𝑁‘(𝑁‘suc 𝑗))))
4140eleq2d 2266 . . . . . . 7 (𝑖 = (𝑁‘suc 𝑗) → (𝑤 ∈ (𝐹 “ (𝑁𝑖)) ↔ 𝑤 ∈ (𝐹 “ (𝑁‘(𝑁‘suc 𝑗)))))
4241rspcev 2868 . . . . . 6 (((𝑁‘suc 𝑗) ∈ ℕ0𝑤 ∈ (𝐹 “ (𝑁‘(𝑁‘suc 𝑗)))) → ∃𝑖 ∈ ℕ0 𝑤 ∈ (𝐹 “ (𝑁𝑖)))
4321, 38, 42syl2anc 411 . . . . 5 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → ∃𝑖 ∈ ℕ0 𝑤 ∈ (𝐹 “ (𝑁𝑖)))
4414, 43rexlimddv 2619 . . . 4 ((𝜑𝑤𝐴) → ∃𝑖 ∈ ℕ0 𝑤 ∈ (𝐹 “ (𝑁𝑖)))
45 eliun 3921 . . . 4 (𝑤 𝑖 ∈ ℕ0 (𝐹 “ (𝑁𝑖)) ↔ ∃𝑖 ∈ ℕ0 𝑤 ∈ (𝐹 “ (𝑁𝑖)))
4644, 45sylibr 134 . . 3 ((𝜑𝑤𝐴) → 𝑤 𝑖 ∈ ℕ0 (𝐹 “ (𝑁𝑖)))
478rneqi 4895 . . . . . . 7 ran 𝐿 = ran 𝑖 ∈ ℕ0 (𝐻𝑖)
48 rniun 5081 . . . . . . 7 ran 𝑖 ∈ ℕ0 (𝐻𝑖) = 𝑖 ∈ ℕ0 ran (𝐻𝑖)
4947, 48eqtri 2217 . . . . . 6 ran 𝐿 = 𝑖 ∈ ℕ0 ran (𝐻𝑖)
501adantr 276 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
512adantr 276 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → 𝐹:ω–onto𝐴)
523adantr 276 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
53 simpr 110 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
5450, 51, 52, 4, 5, 6, 7, 53ennnfonelemhf1o 12655 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (𝐻𝑖):dom (𝐻𝑖)–1-1-onto→(𝐹 “ (𝑁𝑖)))
55 f1ofo 5514 . . . . . . . 8 ((𝐻𝑖):dom (𝐻𝑖)–1-1-onto→(𝐹 “ (𝑁𝑖)) → (𝐻𝑖):dom (𝐻𝑖)–onto→(𝐹 “ (𝑁𝑖)))
56 forn 5486 . . . . . . . 8 ((𝐻𝑖):dom (𝐻𝑖)–onto→(𝐹 “ (𝑁𝑖)) → ran (𝐻𝑖) = (𝐹 “ (𝑁𝑖)))
5754, 55, 563syl 17 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → ran (𝐻𝑖) = (𝐹 “ (𝑁𝑖)))
5857iuneq2dv 3938 . . . . . 6 (𝜑 𝑖 ∈ ℕ0 ran (𝐻𝑖) = 𝑖 ∈ ℕ0 (𝐹 “ (𝑁𝑖)))
5949, 58eqtrid 2241 . . . . 5 (𝜑 → ran 𝐿 = 𝑖 ∈ ℕ0 (𝐹 “ (𝑁𝑖)))
6059eleq2d 2266 . . . 4 (𝜑 → (𝑤 ∈ ran 𝐿𝑤 𝑖 ∈ ℕ0 (𝐹 “ (𝑁𝑖))))
6160adantr 276 . . 3 ((𝜑𝑤𝐴) → (𝑤 ∈ ran 𝐿𝑤 𝑖 ∈ ℕ0 (𝐹 “ (𝑁𝑖))))
6246, 61mpbird 167 . 2 ((𝜑𝑤𝐴) → 𝑤 ∈ ran 𝐿)
6312, 62eqelssd 3203 1 (𝜑 → ran 𝐿 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  wral 2475  wrex 2476  cun 3155  wss 3157  c0 3451  ifcif 3562  {csn 3623  cop 3626   ciun 3917  cmpt 4095  Ord word 4398  suc csuc 4401  ωcom 4627  ccnv 4663  dom cdm 4664  ran crn 4665  cima 4667   Fn wfn 5254  wf 5255  1-1wf1 5256  ontowfo 5257  1-1-ontowf1o 5258  cfv 5259  (class class class)co 5925  cmpo 5927  freccfrec 6457  pm cpm 6717  0cc0 7896  1c1 7897   + caddc 7899  cmin 8214  0cn0 9266  cz 9343  cuz 9618  seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pm 6719  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557
This theorem is referenced by:  ennnfonelemen  12663
  Copyright terms: Public domain W3C validator