| Step | Hyp | Ref
 | Expression | 
| 1 |   | ennnfonelemh.dceq | 
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | 
| 2 |   | ennnfonelemh.f | 
. . . 4
⊢ (𝜑 → 𝐹:ω–onto→𝐴) | 
| 3 |   | ennnfonelemh.ne | 
. . . 4
⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | 
| 4 |   | ennnfonelemh.g | 
. . . 4
⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦
if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | 
| 5 |   | ennnfonelemh.n | 
. . . 4
⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | 
| 6 |   | ennnfonelemh.j | 
. . . 4
⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | 
| 7 |   | ennnfonelemh.h | 
. . . 4
⊢ 𝐻 = seq0(𝐺, 𝐽) | 
| 8 |   | ennnfone.l | 
. . . 4
⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) | 
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | ennnfonelemf1 12635 | 
. . 3
⊢ (𝜑 → 𝐿:dom 𝐿–1-1→𝐴) | 
| 10 |   | f1f 5463 | 
. . 3
⊢ (𝐿:dom 𝐿–1-1→𝐴 → 𝐿:dom 𝐿⟶𝐴) | 
| 11 |   | frn 5416 | 
. . 3
⊢ (𝐿:dom 𝐿⟶𝐴 → ran 𝐿 ⊆ 𝐴) | 
| 12 | 9, 10, 11 | 3syl 17 | 
. 2
⊢ (𝜑 → ran 𝐿 ⊆ 𝐴) | 
| 13 |   | foelrn 5799 | 
. . . . . 6
⊢ ((𝐹:ω–onto→𝐴 ∧ 𝑤 ∈ 𝐴) → ∃𝑗 ∈ ω 𝑤 = (𝐹‘𝑗)) | 
| 14 | 2, 13 | sylan 283 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∃𝑗 ∈ ω 𝑤 = (𝐹‘𝑗)) | 
| 15 |   | 0zd 9338 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → 0 ∈ ℤ) | 
| 16 |   | simprl 529 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → 𝑗 ∈ ω) | 
| 17 |   | peano2 4631 | 
. . . . . . . . 9
⊢ (𝑗 ∈ ω → suc 𝑗 ∈
ω) | 
| 18 | 16, 17 | syl 14 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → suc 𝑗 ∈ ω) | 
| 19 | 15, 5, 18 | frec2uzuzd 10494 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → (𝑁‘suc 𝑗) ∈
(ℤ≥‘0)) | 
| 20 |   | nn0uz 9636 | 
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) | 
| 21 | 19, 20 | eleqtrrdi 2290 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → (𝑁‘suc 𝑗) ∈
ℕ0) | 
| 22 |   | fofn 5482 | 
. . . . . . . . . 10
⊢ (𝐹:ω–onto→𝐴 → 𝐹 Fn ω) | 
| 23 | 2, 22 | syl 14 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐹 Fn ω) | 
| 24 | 23 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → 𝐹 Fn ω) | 
| 25 |   | ordom 4643 | 
. . . . . . . . 9
⊢ Ord
ω | 
| 26 |   | ordsucss 4540 | 
. . . . . . . . 9
⊢ (Ord
ω → (𝑗 ∈
ω → suc 𝑗
⊆ ω)) | 
| 27 | 25, 16, 26 | mpsyl 65 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → suc 𝑗 ⊆ ω) | 
| 28 |   | vex 2766 | 
. . . . . . . . . 10
⊢ 𝑗 ∈ V | 
| 29 | 28 | sucid 4452 | 
. . . . . . . . 9
⊢ 𝑗 ∈ suc 𝑗 | 
| 30 | 29 | a1i 9 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → 𝑗 ∈ suc 𝑗) | 
| 31 |   | fnfvima 5797 | 
. . . . . . . 8
⊢ ((𝐹 Fn ω ∧ suc 𝑗 ⊆ ω ∧ 𝑗 ∈ suc 𝑗) → (𝐹‘𝑗) ∈ (𝐹 “ suc 𝑗)) | 
| 32 | 24, 27, 30, 31 | syl3anc 1249 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → (𝐹‘𝑗) ∈ (𝐹 “ suc 𝑗)) | 
| 33 |   | simprr 531 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → 𝑤 = (𝐹‘𝑗)) | 
| 34 | 15, 5 | frec2uzf1od 10498 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → 𝑁:ω–1-1-onto→(ℤ≥‘0)) | 
| 35 |   | f1ocnvfv1 5824 | 
. . . . . . . . 9
⊢ ((𝑁:ω–1-1-onto→(ℤ≥‘0) ∧ suc
𝑗 ∈ ω) →
(◡𝑁‘(𝑁‘suc 𝑗)) = suc 𝑗) | 
| 36 | 34, 18, 35 | syl2anc 411 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → (◡𝑁‘(𝑁‘suc 𝑗)) = suc 𝑗) | 
| 37 | 36 | imaeq2d 5009 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → (𝐹 “ (◡𝑁‘(𝑁‘suc 𝑗))) = (𝐹 “ suc 𝑗)) | 
| 38 | 32, 33, 37 | 3eltr4d 2280 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → 𝑤 ∈ (𝐹 “ (◡𝑁‘(𝑁‘suc 𝑗)))) | 
| 39 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑖 = (𝑁‘suc 𝑗) → (◡𝑁‘𝑖) = (◡𝑁‘(𝑁‘suc 𝑗))) | 
| 40 | 39 | imaeq2d 5009 | 
. . . . . . . 8
⊢ (𝑖 = (𝑁‘suc 𝑗) → (𝐹 “ (◡𝑁‘𝑖)) = (𝐹 “ (◡𝑁‘(𝑁‘suc 𝑗)))) | 
| 41 | 40 | eleq2d 2266 | 
. . . . . . 7
⊢ (𝑖 = (𝑁‘suc 𝑗) → (𝑤 ∈ (𝐹 “ (◡𝑁‘𝑖)) ↔ 𝑤 ∈ (𝐹 “ (◡𝑁‘(𝑁‘suc 𝑗))))) | 
| 42 | 41 | rspcev 2868 | 
. . . . . 6
⊢ (((𝑁‘suc 𝑗) ∈ ℕ0 ∧ 𝑤 ∈ (𝐹 “ (◡𝑁‘(𝑁‘suc 𝑗)))) → ∃𝑖 ∈ ℕ0 𝑤 ∈ (𝐹 “ (◡𝑁‘𝑖))) | 
| 43 | 21, 38, 42 | syl2anc 411 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → ∃𝑖 ∈ ℕ0 𝑤 ∈ (𝐹 “ (◡𝑁‘𝑖))) | 
| 44 | 14, 43 | rexlimddv 2619 | 
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∃𝑖 ∈ ℕ0 𝑤 ∈ (𝐹 “ (◡𝑁‘𝑖))) | 
| 45 |   | eliun 3920 | 
. . . 4
⊢ (𝑤 ∈ ∪ 𝑖 ∈ ℕ0 (𝐹 “ (◡𝑁‘𝑖)) ↔ ∃𝑖 ∈ ℕ0 𝑤 ∈ (𝐹 “ (◡𝑁‘𝑖))) | 
| 46 | 44, 45 | sylibr 134 | 
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ∪
𝑖 ∈
ℕ0 (𝐹
“ (◡𝑁‘𝑖))) | 
| 47 | 8 | rneqi 4894 | 
. . . . . . 7
⊢ ran 𝐿 = ran ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) | 
| 48 |   | rniun 5080 | 
. . . . . . 7
⊢ ran
∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) = ∪ 𝑖 ∈ ℕ0 ran
(𝐻‘𝑖) | 
| 49 | 47, 48 | eqtri 2217 | 
. . . . . 6
⊢ ran 𝐿 = ∪ 𝑖 ∈ ℕ0 ran (𝐻‘𝑖) | 
| 50 | 1 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | 
| 51 | 2 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐹:ω–onto→𝐴) | 
| 52 | 3 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
∀𝑛 ∈ ω
∃𝑘 ∈ ω
∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | 
| 53 |   | simpr 110 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈
ℕ0) | 
| 54 | 50, 51, 52, 4, 5, 6,
7, 53 | ennnfonelemhf1o 12630 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝐻‘𝑖):dom (𝐻‘𝑖)–1-1-onto→(𝐹 “ (◡𝑁‘𝑖))) | 
| 55 |   | f1ofo 5511 | 
. . . . . . . 8
⊢ ((𝐻‘𝑖):dom (𝐻‘𝑖)–1-1-onto→(𝐹 “ (◡𝑁‘𝑖)) → (𝐻‘𝑖):dom (𝐻‘𝑖)–onto→(𝐹 “ (◡𝑁‘𝑖))) | 
| 56 |   | forn 5483 | 
. . . . . . . 8
⊢ ((𝐻‘𝑖):dom (𝐻‘𝑖)–onto→(𝐹 “ (◡𝑁‘𝑖)) → ran (𝐻‘𝑖) = (𝐹 “ (◡𝑁‘𝑖))) | 
| 57 | 54, 55, 56 | 3syl 17 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ran
(𝐻‘𝑖) = (𝐹 “ (◡𝑁‘𝑖))) | 
| 58 | 57 | iuneq2dv 3937 | 
. . . . . 6
⊢ (𝜑 → ∪ 𝑖 ∈ ℕ0 ran (𝐻‘𝑖) = ∪ 𝑖 ∈ ℕ0
(𝐹 “ (◡𝑁‘𝑖))) | 
| 59 | 49, 58 | eqtrid 2241 | 
. . . . 5
⊢ (𝜑 → ran 𝐿 = ∪ 𝑖 ∈ ℕ0
(𝐹 “ (◡𝑁‘𝑖))) | 
| 60 | 59 | eleq2d 2266 | 
. . . 4
⊢ (𝜑 → (𝑤 ∈ ran 𝐿 ↔ 𝑤 ∈ ∪
𝑖 ∈
ℕ0 (𝐹
“ (◡𝑁‘𝑖)))) | 
| 61 | 60 | adantr 276 | 
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝑤 ∈ ran 𝐿 ↔ 𝑤 ∈ ∪
𝑖 ∈
ℕ0 (𝐹
“ (◡𝑁‘𝑖)))) | 
| 62 | 46, 61 | mpbird 167 | 
. 2
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ran 𝐿) | 
| 63 | 12, 62 | eqelssd 3202 | 
1
⊢ (𝜑 → ran 𝐿 = 𝐴) |