Step | Hyp | Ref
| Expression |
1 | | ennnfonelemh.dceq |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
2 | | ennnfonelemh.f |
. . . 4
⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
3 | | ennnfonelemh.ne |
. . . 4
⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
4 | | ennnfonelemh.g |
. . . 4
⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦
if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
5 | | ennnfonelemh.n |
. . . 4
⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
6 | | ennnfonelemh.j |
. . . 4
⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
7 | | ennnfonelemh.h |
. . . 4
⊢ 𝐻 = seq0(𝐺, 𝐽) |
8 | | ennnfone.l |
. . . 4
⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ennnfonelemf1 12351 |
. . 3
⊢ (𝜑 → 𝐿:dom 𝐿–1-1→𝐴) |
10 | | f1f 5393 |
. . 3
⊢ (𝐿:dom 𝐿–1-1→𝐴 → 𝐿:dom 𝐿⟶𝐴) |
11 | | frn 5346 |
. . 3
⊢ (𝐿:dom 𝐿⟶𝐴 → ran 𝐿 ⊆ 𝐴) |
12 | 9, 10, 11 | 3syl 17 |
. 2
⊢ (𝜑 → ran 𝐿 ⊆ 𝐴) |
13 | | foelrn 5721 |
. . . . . 6
⊢ ((𝐹:ω–onto→𝐴 ∧ 𝑤 ∈ 𝐴) → ∃𝑗 ∈ ω 𝑤 = (𝐹‘𝑗)) |
14 | 2, 13 | sylan 281 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∃𝑗 ∈ ω 𝑤 = (𝐹‘𝑗)) |
15 | | 0zd 9203 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → 0 ∈ ℤ) |
16 | | simprl 521 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → 𝑗 ∈ ω) |
17 | | peano2 4572 |
. . . . . . . . 9
⊢ (𝑗 ∈ ω → suc 𝑗 ∈
ω) |
18 | 16, 17 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → suc 𝑗 ∈ ω) |
19 | 15, 5, 18 | frec2uzuzd 10337 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → (𝑁‘suc 𝑗) ∈
(ℤ≥‘0)) |
20 | | nn0uz 9500 |
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) |
21 | 19, 20 | eleqtrrdi 2260 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → (𝑁‘suc 𝑗) ∈
ℕ0) |
22 | | fofn 5412 |
. . . . . . . . . 10
⊢ (𝐹:ω–onto→𝐴 → 𝐹 Fn ω) |
23 | 2, 22 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 Fn ω) |
24 | 23 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → 𝐹 Fn ω) |
25 | | ordom 4584 |
. . . . . . . . 9
⊢ Ord
ω |
26 | | ordsucss 4481 |
. . . . . . . . 9
⊢ (Ord
ω → (𝑗 ∈
ω → suc 𝑗
⊆ ω)) |
27 | 25, 16, 26 | mpsyl 65 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → suc 𝑗 ⊆ ω) |
28 | | vex 2729 |
. . . . . . . . . 10
⊢ 𝑗 ∈ V |
29 | 28 | sucid 4395 |
. . . . . . . . 9
⊢ 𝑗 ∈ suc 𝑗 |
30 | 29 | a1i 9 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → 𝑗 ∈ suc 𝑗) |
31 | | fnfvima 5719 |
. . . . . . . 8
⊢ ((𝐹 Fn ω ∧ suc 𝑗 ⊆ ω ∧ 𝑗 ∈ suc 𝑗) → (𝐹‘𝑗) ∈ (𝐹 “ suc 𝑗)) |
32 | 24, 27, 30, 31 | syl3anc 1228 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → (𝐹‘𝑗) ∈ (𝐹 “ suc 𝑗)) |
33 | | simprr 522 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → 𝑤 = (𝐹‘𝑗)) |
34 | 15, 5 | frec2uzf1od 10341 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → 𝑁:ω–1-1-onto→(ℤ≥‘0)) |
35 | | f1ocnvfv1 5745 |
. . . . . . . . 9
⊢ ((𝑁:ω–1-1-onto→(ℤ≥‘0) ∧ suc
𝑗 ∈ ω) →
(◡𝑁‘(𝑁‘suc 𝑗)) = suc 𝑗) |
36 | 34, 18, 35 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → (◡𝑁‘(𝑁‘suc 𝑗)) = suc 𝑗) |
37 | 36 | imaeq2d 4946 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → (𝐹 “ (◡𝑁‘(𝑁‘suc 𝑗))) = (𝐹 “ suc 𝑗)) |
38 | 32, 33, 37 | 3eltr4d 2250 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → 𝑤 ∈ (𝐹 “ (◡𝑁‘(𝑁‘suc 𝑗)))) |
39 | | fveq2 5486 |
. . . . . . . . 9
⊢ (𝑖 = (𝑁‘suc 𝑗) → (◡𝑁‘𝑖) = (◡𝑁‘(𝑁‘suc 𝑗))) |
40 | 39 | imaeq2d 4946 |
. . . . . . . 8
⊢ (𝑖 = (𝑁‘suc 𝑗) → (𝐹 “ (◡𝑁‘𝑖)) = (𝐹 “ (◡𝑁‘(𝑁‘suc 𝑗)))) |
41 | 40 | eleq2d 2236 |
. . . . . . 7
⊢ (𝑖 = (𝑁‘suc 𝑗) → (𝑤 ∈ (𝐹 “ (◡𝑁‘𝑖)) ↔ 𝑤 ∈ (𝐹 “ (◡𝑁‘(𝑁‘suc 𝑗))))) |
42 | 41 | rspcev 2830 |
. . . . . 6
⊢ (((𝑁‘suc 𝑗) ∈ ℕ0 ∧ 𝑤 ∈ (𝐹 “ (◡𝑁‘(𝑁‘suc 𝑗)))) → ∃𝑖 ∈ ℕ0 𝑤 ∈ (𝐹 “ (◡𝑁‘𝑖))) |
43 | 21, 38, 42 | syl2anc 409 |
. . . . 5
⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹‘𝑗))) → ∃𝑖 ∈ ℕ0 𝑤 ∈ (𝐹 “ (◡𝑁‘𝑖))) |
44 | 14, 43 | rexlimddv 2588 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∃𝑖 ∈ ℕ0 𝑤 ∈ (𝐹 “ (◡𝑁‘𝑖))) |
45 | | eliun 3870 |
. . . 4
⊢ (𝑤 ∈ ∪ 𝑖 ∈ ℕ0 (𝐹 “ (◡𝑁‘𝑖)) ↔ ∃𝑖 ∈ ℕ0 𝑤 ∈ (𝐹 “ (◡𝑁‘𝑖))) |
46 | 44, 45 | sylibr 133 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ∪
𝑖 ∈
ℕ0 (𝐹
“ (◡𝑁‘𝑖))) |
47 | 8 | rneqi 4832 |
. . . . . . 7
⊢ ran 𝐿 = ran ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) |
48 | | rniun 5014 |
. . . . . . 7
⊢ ran
∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) = ∪ 𝑖 ∈ ℕ0 ran
(𝐻‘𝑖) |
49 | 47, 48 | eqtri 2186 |
. . . . . 6
⊢ ran 𝐿 = ∪ 𝑖 ∈ ℕ0 ran (𝐻‘𝑖) |
50 | 1 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
51 | 2 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐹:ω–onto→𝐴) |
52 | 3 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
∀𝑛 ∈ ω
∃𝑘 ∈ ω
∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
53 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈
ℕ0) |
54 | 50, 51, 52, 4, 5, 6,
7, 53 | ennnfonelemhf1o 12346 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝐻‘𝑖):dom (𝐻‘𝑖)–1-1-onto→(𝐹 “ (◡𝑁‘𝑖))) |
55 | | f1ofo 5439 |
. . . . . . . 8
⊢ ((𝐻‘𝑖):dom (𝐻‘𝑖)–1-1-onto→(𝐹 “ (◡𝑁‘𝑖)) → (𝐻‘𝑖):dom (𝐻‘𝑖)–onto→(𝐹 “ (◡𝑁‘𝑖))) |
56 | | forn 5413 |
. . . . . . . 8
⊢ ((𝐻‘𝑖):dom (𝐻‘𝑖)–onto→(𝐹 “ (◡𝑁‘𝑖)) → ran (𝐻‘𝑖) = (𝐹 “ (◡𝑁‘𝑖))) |
57 | 54, 55, 56 | 3syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ran
(𝐻‘𝑖) = (𝐹 “ (◡𝑁‘𝑖))) |
58 | 57 | iuneq2dv 3887 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑖 ∈ ℕ0 ran (𝐻‘𝑖) = ∪ 𝑖 ∈ ℕ0
(𝐹 “ (◡𝑁‘𝑖))) |
59 | 49, 58 | syl5eq 2211 |
. . . . 5
⊢ (𝜑 → ran 𝐿 = ∪ 𝑖 ∈ ℕ0
(𝐹 “ (◡𝑁‘𝑖))) |
60 | 59 | eleq2d 2236 |
. . . 4
⊢ (𝜑 → (𝑤 ∈ ran 𝐿 ↔ 𝑤 ∈ ∪
𝑖 ∈
ℕ0 (𝐹
“ (◡𝑁‘𝑖)))) |
61 | 60 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝑤 ∈ ran 𝐿 ↔ 𝑤 ∈ ∪
𝑖 ∈
ℕ0 (𝐹
“ (◡𝑁‘𝑖)))) |
62 | 46, 61 | mpbird 166 |
. 2
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ran 𝐿) |
63 | 12, 62 | eqelssd 3161 |
1
⊢ (𝜑 → ran 𝐿 = 𝐴) |