ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemrn GIF version

Theorem ennnfonelemrn 12790
Description: Lemma for ennnfone 12796. 𝐿 is onto 𝐴. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfone.l 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
Assertion
Ref Expression
ennnfonelemrn (𝜑 → ran 𝐿 = 𝐴)
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑖,𝐹,𝑗,𝑥,𝑦,𝑘   𝑛,𝐹,𝑘   𝑗,𝐺   𝑖,𝐻,𝑗,𝑥,𝑦,𝑘   𝑗,𝐽   𝑖,𝑁,𝑗,𝑥,𝑦,𝑘   𝜑,𝑖,𝑗,𝑥,𝑦,𝑘   𝑗,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑖,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐻(𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐿(𝑥,𝑦,𝑖,𝑗,𝑘,𝑛)   𝑁(𝑛)

Proof of Theorem ennnfonelemrn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . 4 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . 4 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . 4 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . 4 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . 4 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . 4 𝐻 = seq0(𝐺, 𝐽)
8 ennnfone.l . . . 4 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemf1 12789 . . 3 (𝜑𝐿:dom 𝐿1-1𝐴)
10 f1f 5481 . . 3 (𝐿:dom 𝐿1-1𝐴𝐿:dom 𝐿𝐴)
11 frn 5434 . . 3 (𝐿:dom 𝐿𝐴 → ran 𝐿𝐴)
129, 10, 113syl 17 . 2 (𝜑 → ran 𝐿𝐴)
13 foelrn 5821 . . . . . 6 ((𝐹:ω–onto𝐴𝑤𝐴) → ∃𝑗 ∈ ω 𝑤 = (𝐹𝑗))
142, 13sylan 283 . . . . 5 ((𝜑𝑤𝐴) → ∃𝑗 ∈ ω 𝑤 = (𝐹𝑗))
15 0zd 9384 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → 0 ∈ ℤ)
16 simprl 529 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → 𝑗 ∈ ω)
17 peano2 4643 . . . . . . . . 9 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
1816, 17syl 14 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → suc 𝑗 ∈ ω)
1915, 5, 18frec2uzuzd 10547 . . . . . . 7 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → (𝑁‘suc 𝑗) ∈ (ℤ‘0))
20 nn0uz 9683 . . . . . . 7 0 = (ℤ‘0)
2119, 20eleqtrrdi 2299 . . . . . 6 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → (𝑁‘suc 𝑗) ∈ ℕ0)
22 fofn 5500 . . . . . . . . . 10 (𝐹:ω–onto𝐴𝐹 Fn ω)
232, 22syl 14 . . . . . . . . 9 (𝜑𝐹 Fn ω)
2423ad2antrr 488 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → 𝐹 Fn ω)
25 ordom 4655 . . . . . . . . 9 Ord ω
26 ordsucss 4552 . . . . . . . . 9 (Ord ω → (𝑗 ∈ ω → suc 𝑗 ⊆ ω))
2725, 16, 26mpsyl 65 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → suc 𝑗 ⊆ ω)
28 vex 2775 . . . . . . . . . 10 𝑗 ∈ V
2928sucid 4464 . . . . . . . . 9 𝑗 ∈ suc 𝑗
3029a1i 9 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → 𝑗 ∈ suc 𝑗)
31 fnfvima 5819 . . . . . . . 8 ((𝐹 Fn ω ∧ suc 𝑗 ⊆ ω ∧ 𝑗 ∈ suc 𝑗) → (𝐹𝑗) ∈ (𝐹 “ suc 𝑗))
3224, 27, 30, 31syl3anc 1250 . . . . . . 7 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → (𝐹𝑗) ∈ (𝐹 “ suc 𝑗))
33 simprr 531 . . . . . . 7 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → 𝑤 = (𝐹𝑗))
3415, 5frec2uzf1od 10551 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → 𝑁:ω–1-1-onto→(ℤ‘0))
35 f1ocnvfv1 5846 . . . . . . . . 9 ((𝑁:ω–1-1-onto→(ℤ‘0) ∧ suc 𝑗 ∈ ω) → (𝑁‘(𝑁‘suc 𝑗)) = suc 𝑗)
3634, 18, 35syl2anc 411 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → (𝑁‘(𝑁‘suc 𝑗)) = suc 𝑗)
3736imaeq2d 5022 . . . . . . 7 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → (𝐹 “ (𝑁‘(𝑁‘suc 𝑗))) = (𝐹 “ suc 𝑗))
3832, 33, 373eltr4d 2289 . . . . . 6 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → 𝑤 ∈ (𝐹 “ (𝑁‘(𝑁‘suc 𝑗))))
39 fveq2 5576 . . . . . . . . 9 (𝑖 = (𝑁‘suc 𝑗) → (𝑁𝑖) = (𝑁‘(𝑁‘suc 𝑗)))
4039imaeq2d 5022 . . . . . . . 8 (𝑖 = (𝑁‘suc 𝑗) → (𝐹 “ (𝑁𝑖)) = (𝐹 “ (𝑁‘(𝑁‘suc 𝑗))))
4140eleq2d 2275 . . . . . . 7 (𝑖 = (𝑁‘suc 𝑗) → (𝑤 ∈ (𝐹 “ (𝑁𝑖)) ↔ 𝑤 ∈ (𝐹 “ (𝑁‘(𝑁‘suc 𝑗)))))
4241rspcev 2877 . . . . . 6 (((𝑁‘suc 𝑗) ∈ ℕ0𝑤 ∈ (𝐹 “ (𝑁‘(𝑁‘suc 𝑗)))) → ∃𝑖 ∈ ℕ0 𝑤 ∈ (𝐹 “ (𝑁𝑖)))
4321, 38, 42syl2anc 411 . . . . 5 (((𝜑𝑤𝐴) ∧ (𝑗 ∈ ω ∧ 𝑤 = (𝐹𝑗))) → ∃𝑖 ∈ ℕ0 𝑤 ∈ (𝐹 “ (𝑁𝑖)))
4414, 43rexlimddv 2628 . . . 4 ((𝜑𝑤𝐴) → ∃𝑖 ∈ ℕ0 𝑤 ∈ (𝐹 “ (𝑁𝑖)))
45 eliun 3931 . . . 4 (𝑤 𝑖 ∈ ℕ0 (𝐹 “ (𝑁𝑖)) ↔ ∃𝑖 ∈ ℕ0 𝑤 ∈ (𝐹 “ (𝑁𝑖)))
4644, 45sylibr 134 . . 3 ((𝜑𝑤𝐴) → 𝑤 𝑖 ∈ ℕ0 (𝐹 “ (𝑁𝑖)))
478rneqi 4906 . . . . . . 7 ran 𝐿 = ran 𝑖 ∈ ℕ0 (𝐻𝑖)
48 rniun 5093 . . . . . . 7 ran 𝑖 ∈ ℕ0 (𝐻𝑖) = 𝑖 ∈ ℕ0 ran (𝐻𝑖)
4947, 48eqtri 2226 . . . . . 6 ran 𝐿 = 𝑖 ∈ ℕ0 ran (𝐻𝑖)
501adantr 276 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
512adantr 276 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → 𝐹:ω–onto𝐴)
523adantr 276 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
53 simpr 110 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
5450, 51, 52, 4, 5, 6, 7, 53ennnfonelemhf1o 12784 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (𝐻𝑖):dom (𝐻𝑖)–1-1-onto→(𝐹 “ (𝑁𝑖)))
55 f1ofo 5529 . . . . . . . 8 ((𝐻𝑖):dom (𝐻𝑖)–1-1-onto→(𝐹 “ (𝑁𝑖)) → (𝐻𝑖):dom (𝐻𝑖)–onto→(𝐹 “ (𝑁𝑖)))
56 forn 5501 . . . . . . . 8 ((𝐻𝑖):dom (𝐻𝑖)–onto→(𝐹 “ (𝑁𝑖)) → ran (𝐻𝑖) = (𝐹 “ (𝑁𝑖)))
5754, 55, 563syl 17 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → ran (𝐻𝑖) = (𝐹 “ (𝑁𝑖)))
5857iuneq2dv 3948 . . . . . 6 (𝜑 𝑖 ∈ ℕ0 ran (𝐻𝑖) = 𝑖 ∈ ℕ0 (𝐹 “ (𝑁𝑖)))
5949, 58eqtrid 2250 . . . . 5 (𝜑 → ran 𝐿 = 𝑖 ∈ ℕ0 (𝐹 “ (𝑁𝑖)))
6059eleq2d 2275 . . . 4 (𝜑 → (𝑤 ∈ ran 𝐿𝑤 𝑖 ∈ ℕ0 (𝐹 “ (𝑁𝑖))))
6160adantr 276 . . 3 ((𝜑𝑤𝐴) → (𝑤 ∈ ran 𝐿𝑤 𝑖 ∈ ℕ0 (𝐹 “ (𝑁𝑖))))
6246, 61mpbird 167 . 2 ((𝜑𝑤𝐴) → 𝑤 ∈ ran 𝐿)
6312, 62eqelssd 3212 1 (𝜑 → ran 𝐿 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2176  wne 2376  wral 2484  wrex 2485  cun 3164  wss 3166  c0 3460  ifcif 3571  {csn 3633  cop 3636   ciun 3927  cmpt 4105  Ord word 4409  suc csuc 4412  ωcom 4638  ccnv 4674  dom cdm 4675  ran crn 4676  cima 4678   Fn wfn 5266  wf 5267  1-1wf1 5268  ontowfo 5269  1-1-ontowf1o 5270  cfv 5271  (class class class)co 5944  cmpo 5946  freccfrec 6476  pm cpm 6736  0cc0 7925  1c1 7926   + caddc 7928  cmin 8243  0cn0 9295  cz 9372  cuz 9648  seqcseq 10592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pm 6738  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-seqfrec 10593
This theorem is referenced by:  ennnfonelemen  12792
  Copyright terms: Public domain W3C validator