ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dviaddf GIF version

Theorem dviaddf 15025
Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dviaddf.x (𝜑𝑋𝑆)
dvaddf.f (𝜑𝐹:𝑋⟶ℂ)
dvaddf.g (𝜑𝐺:𝑋⟶ℂ)
dvaddf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvaddf.dg (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dviaddf (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)) = ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)))

Proof of Theorem dviaddf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 8021 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
21adantl 277 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
3 dvaddf.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
4 cnex 8020 . . . . . . 7 ℂ ∈ V
54a1i 9 . . . . . 6 (𝜑 → ℂ ∈ V)
6 dvaddf.f . . . . . 6 (𝜑𝐹:𝑋⟶ℂ)
7 dviaddf.x . . . . . 6 (𝜑𝑋𝑆)
8 elpm2r 6734 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
95, 3, 6, 7, 8syl22anc 1250 . . . . 5 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
10 dvfgg 15008 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
113, 9, 10syl2anc 411 . . . 4 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
12 dvaddf.df . . . . 5 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
1312feq2d 5398 . . . 4 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
1411, 13mpbid 147 . . 3 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
15 dvaddf.g . . . . . 6 (𝜑𝐺:𝑋⟶ℂ)
16 elpm2r 6734 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆))
175, 3, 15, 7, 16syl22anc 1250 . . . . 5 (𝜑𝐺 ∈ (ℂ ↑pm 𝑆))
18 dvfgg 15008 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
193, 17, 18syl2anc 411 . . . 4 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
20 dvaddf.dg . . . . 5 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
2120feq2d 5398 . . . 4 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
2219, 21mpbid 147 . . 3 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
233, 7ssexd 4174 . . 3 (𝜑𝑋 ∈ V)
24 inidm 3373 . . 3 (𝑋𝑋) = 𝑋
252, 6, 15, 23, 23, 24off 6152 . . . . . 6 (𝜑 → (𝐹𝑓 + 𝐺):𝑋⟶ℂ)
26 elpm2r 6734 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹𝑓 + 𝐺):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆))
275, 3, 25, 7, 26syl22anc 1250 . . . . 5 (𝜑 → (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆))
28 dvfgg 15008 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝐹𝑓 + 𝐺)):dom (𝑆 D (𝐹𝑓 + 𝐺))⟶ℂ)
293, 27, 28syl2anc 411 . . . 4 (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)):dom (𝑆 D (𝐹𝑓 + 𝐺))⟶ℂ)
30 recnprss 15007 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
313, 30syl 14 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
3231, 25, 7dvbss 15005 . . . . . 6 (𝜑 → dom (𝑆 D (𝐹𝑓 + 𝐺)) ⊆ 𝑋)
33 reldvg 14999 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D (𝐹𝑓 + 𝐺)))
3431, 27, 33syl2anc 411 . . . . . . . 8 (𝜑 → Rel (𝑆 D (𝐹𝑓 + 𝐺)))
3534adantr 276 . . . . . . 7 ((𝜑𝑥𝑋) → Rel (𝑆 D (𝐹𝑓 + 𝐺)))
366adantr 276 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐹:𝑋⟶ℂ)
377adantr 276 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑋𝑆)
3815adantr 276 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐺:𝑋⟶ℂ)
3931adantr 276 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑆 ⊆ ℂ)
4012eleq2d 2266 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥𝑋))
4140biimpar 297 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹))
42 ffun 5413 . . . . . . . . . . 11 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
43 funfvbrb 5678 . . . . . . . . . . 11 (Fun (𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4411, 42, 433syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4544adantr 276 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4641, 45mpbid 147 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))
4720eleq2d 2266 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥𝑋))
4847biimpar 297 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺))
49 ffun 5413 . . . . . . . . . . 11 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
50 funfvbrb 5678 . . . . . . . . . . 11 (Fun (𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5119, 49, 503syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5251adantr 276 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5348, 52mpbid 147 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))
54 eqid 2196 . . . . . . . 8 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
5536, 37, 38, 39, 46, 53, 54dvaddxxbr 15021 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥(𝑆 D (𝐹𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)))
56 releldm 4902 . . . . . . 7 ((Rel (𝑆 D (𝐹𝑓 + 𝐺)) ∧ 𝑥(𝑆 D (𝐹𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥))) → 𝑥 ∈ dom (𝑆 D (𝐹𝑓 + 𝐺)))
5735, 55, 56syl2anc 411 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹𝑓 + 𝐺)))
5832, 57eqelssd 3203 . . . . 5 (𝜑 → dom (𝑆 D (𝐹𝑓 + 𝐺)) = 𝑋)
5958feq2d 5398 . . . 4 (𝜑 → ((𝑆 D (𝐹𝑓 + 𝐺)):dom (𝑆 D (𝐹𝑓 + 𝐺))⟶ℂ ↔ (𝑆 D (𝐹𝑓 + 𝐺)):𝑋⟶ℂ))
6029, 59mpbid 147 . . 3 (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)):𝑋⟶ℂ)
61 eqidd 2197 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑆 D 𝐹)‘𝑥))
62 eqidd 2197 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) = ((𝑆 D 𝐺)‘𝑥))
633adantr 276 . . . . 5 ((𝜑𝑥𝑋) → 𝑆 ∈ {ℝ, ℂ})
6436, 37, 38, 63, 41, 48dvaddxx 15023 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D (𝐹𝑓 + 𝐺))‘𝑥) = (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)))
6564eqcomd 2202 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)) = ((𝑆 D (𝐹𝑓 + 𝐺))‘𝑥))
662, 14, 22, 23, 23, 24, 60, 61, 62, 65offeq 6153 . 2 (𝜑 → ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)) = (𝑆 D (𝐹𝑓 + 𝐺)))
6766eqcomd 2202 1 (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)) = ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  {cpr 3624   class class class wbr 4034  dom cdm 4664  ccom 4668  Rel wrel 4669  Fun wfun 5253  wf 5255  cfv 5259  (class class class)co 5925  𝑓 cof 6137  pm cpm 6717  cc 7894  cr 7895   + caddc 7899  cmin 8214  abscabs 11179  MetOpencmopn 14173   D cdv 14975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016  ax-addf 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-pm 6719  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-xadd 9865  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-rest 12943  df-topgen 12962  df-psmet 14175  df-xmet 14176  df-met 14177  df-bl 14178  df-mopn 14179  df-top 14318  df-topon 14331  df-bases 14363  df-ntr 14416  df-cn 14508  df-cnp 14509  df-tx 14573  df-limced 14976  df-dvap 14977
This theorem is referenced by:  dvmptaddx  15039
  Copyright terms: Public domain W3C validator