Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dviaddf GIF version

 Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvaddf.dg (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dviaddf (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)) = ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)))

Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 7840 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
21adantl 275 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
3 dvaddf.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
4 cnex 7839 . . . . . . 7 ℂ ∈ V
54a1i 9 . . . . . 6 (𝜑 → ℂ ∈ V)
6 dvaddf.f . . . . . 6 (𝜑𝐹:𝑋⟶ℂ)
7 dviaddf.x . . . . . 6 (𝜑𝑋𝑆)
8 elpm2r 6604 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
95, 3, 6, 7, 8syl22anc 1221 . . . . 5 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
10 dvfgg 13017 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
113, 9, 10syl2anc 409 . . . 4 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
12 dvaddf.df . . . . 5 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
1312feq2d 5304 . . . 4 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
1411, 13mpbid 146 . . 3 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
15 dvaddf.g . . . . . 6 (𝜑𝐺:𝑋⟶ℂ)
16 elpm2r 6604 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆))
175, 3, 15, 7, 16syl22anc 1221 . . . . 5 (𝜑𝐺 ∈ (ℂ ↑pm 𝑆))
18 dvfgg 13017 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
193, 17, 18syl2anc 409 . . . 4 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
20 dvaddf.dg . . . . 5 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
2120feq2d 5304 . . . 4 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
2219, 21mpbid 146 . . 3 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
233, 7ssexd 4104 . . 3 (𝜑𝑋 ∈ V)
24 inidm 3316 . . 3 (𝑋𝑋) = 𝑋
252, 6, 15, 23, 23, 24off 6038 . . . . . 6 (𝜑 → (𝐹𝑓 + 𝐺):𝑋⟶ℂ)
26 elpm2r 6604 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹𝑓 + 𝐺):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆))
275, 3, 25, 7, 26syl22anc 1221 . . . . 5 (𝜑 → (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆))
28 dvfgg 13017 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝐹𝑓 + 𝐺)):dom (𝑆 D (𝐹𝑓 + 𝐺))⟶ℂ)
293, 27, 28syl2anc 409 . . . 4 (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)):dom (𝑆 D (𝐹𝑓 + 𝐺))⟶ℂ)
30 recnprss 13016 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
313, 30syl 14 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
3231, 25, 7dvbss 13014 . . . . . 6 (𝜑 → dom (𝑆 D (𝐹𝑓 + 𝐺)) ⊆ 𝑋)
33 reldvg 13008 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D (𝐹𝑓 + 𝐺)))
3431, 27, 33syl2anc 409 . . . . . . . 8 (𝜑 → Rel (𝑆 D (𝐹𝑓 + 𝐺)))
3534adantr 274 . . . . . . 7 ((𝜑𝑥𝑋) → Rel (𝑆 D (𝐹𝑓 + 𝐺)))
366adantr 274 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐹:𝑋⟶ℂ)
377adantr 274 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑋𝑆)
3815adantr 274 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐺:𝑋⟶ℂ)
3931adantr 274 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑆 ⊆ ℂ)
4012eleq2d 2227 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥𝑋))
4140biimpar 295 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹))
42 ffun 5319 . . . . . . . . . . 11 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
43 funfvbrb 5577 . . . . . . . . . . 11 (Fun (𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4411, 42, 433syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4544adantr 274 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4641, 45mpbid 146 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))
4720eleq2d 2227 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥𝑋))
4847biimpar 295 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺))
49 ffun 5319 . . . . . . . . . . 11 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
50 funfvbrb 5577 . . . . . . . . . . 11 (Fun (𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5119, 49, 503syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5251adantr 274 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5348, 52mpbid 146 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))
54 eqid 2157 . . . . . . . 8 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
5536, 37, 38, 39, 46, 53, 54dvaddxxbr 13025 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥(𝑆 D (𝐹𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)))
56 releldm 4818 . . . . . . 7 ((Rel (𝑆 D (𝐹𝑓 + 𝐺)) ∧ 𝑥(𝑆 D (𝐹𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥))) → 𝑥 ∈ dom (𝑆 D (𝐹𝑓 + 𝐺)))
5735, 55, 56syl2anc 409 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹𝑓 + 𝐺)))
5832, 57eqelssd 3147 . . . . 5 (𝜑 → dom (𝑆 D (𝐹𝑓 + 𝐺)) = 𝑋)
5958feq2d 5304 . . . 4 (𝜑 → ((𝑆 D (𝐹𝑓 + 𝐺)):dom (𝑆 D (𝐹𝑓 + 𝐺))⟶ℂ ↔ (𝑆 D (𝐹𝑓 + 𝐺)):𝑋⟶ℂ))
6029, 59mpbid 146 . . 3 (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)):𝑋⟶ℂ)
61 eqidd 2158 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑆 D 𝐹)‘𝑥))
62 eqidd 2158 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) = ((𝑆 D 𝐺)‘𝑥))
633adantr 274 . . . . 5 ((𝜑𝑥𝑋) → 𝑆 ∈ {ℝ, ℂ})
6436, 37, 38, 63, 41, 48dvaddxx 13027 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D (𝐹𝑓 + 𝐺))‘𝑥) = (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)))
6564eqcomd 2163 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)) = ((𝑆 D (𝐹𝑓 + 𝐺))‘𝑥))
662, 14, 22, 23, 23, 24, 60, 61, 62, 65offeq 6039 . 2 (𝜑 → ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)) = (𝑆 D (𝐹𝑓 + 𝐺)))
6766eqcomd 2163 1 (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)) = ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1335   ∈ wcel 2128  Vcvv 2712   ⊆ wss 3102  {cpr 3561   class class class wbr 3965  dom cdm 4583   ∘ ccom 4587  Rel wrel 4588  Fun wfun 5161  ⟶wf 5163  ‘cfv 5167  (class class class)co 5818   ∘𝑓 cof 6024   ↑pm cpm 6587  ℂcc 7713  ℝcr 7714   + caddc 7718   − cmin 8029  abscabs 10879  MetOpencmopn 12345   D cdv 12984 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835  ax-addf 7837 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-isom 5176  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-of 6026  df-1st 6082  df-2nd 6083  df-recs 6246  df-frec 6332  df-map 6588  df-pm 6589  df-sup 6920  df-inf 6921  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-xneg 9661  df-xadd 9662  df-seqfrec 10327  df-exp 10401  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-rest 12313  df-topgen 12332  df-psmet 12347  df-xmet 12348  df-met 12349  df-bl 12350  df-mopn 12351  df-top 12356  df-topon 12369  df-bases 12401  df-ntr 12456  df-cn 12548  df-cnp 12549  df-tx 12613  df-limced 12985  df-dvap 12986 This theorem is referenced by:  dvmptaddx  13041
 Copyright terms: Public domain W3C validator