ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dviaddf GIF version

Theorem dviaddf 13951
Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dviaddf.x (𝜑𝑋𝑆)
dvaddf.f (𝜑𝐹:𝑋⟶ℂ)
dvaddf.g (𝜑𝐺:𝑋⟶ℂ)
dvaddf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvaddf.dg (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dviaddf (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)) = ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)))

Proof of Theorem dviaddf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 7931 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
21adantl 277 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
3 dvaddf.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
4 cnex 7930 . . . . . . 7 ℂ ∈ V
54a1i 9 . . . . . 6 (𝜑 → ℂ ∈ V)
6 dvaddf.f . . . . . 6 (𝜑𝐹:𝑋⟶ℂ)
7 dviaddf.x . . . . . 6 (𝜑𝑋𝑆)
8 elpm2r 6661 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
95, 3, 6, 7, 8syl22anc 1239 . . . . 5 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
10 dvfgg 13939 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
113, 9, 10syl2anc 411 . . . 4 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
12 dvaddf.df . . . . 5 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
1312feq2d 5350 . . . 4 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
1411, 13mpbid 147 . . 3 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
15 dvaddf.g . . . . . 6 (𝜑𝐺:𝑋⟶ℂ)
16 elpm2r 6661 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆))
175, 3, 15, 7, 16syl22anc 1239 . . . . 5 (𝜑𝐺 ∈ (ℂ ↑pm 𝑆))
18 dvfgg 13939 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
193, 17, 18syl2anc 411 . . . 4 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
20 dvaddf.dg . . . . 5 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
2120feq2d 5350 . . . 4 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
2219, 21mpbid 147 . . 3 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
233, 7ssexd 4141 . . 3 (𝜑𝑋 ∈ V)
24 inidm 3344 . . 3 (𝑋𝑋) = 𝑋
252, 6, 15, 23, 23, 24off 6090 . . . . . 6 (𝜑 → (𝐹𝑓 + 𝐺):𝑋⟶ℂ)
26 elpm2r 6661 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹𝑓 + 𝐺):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆))
275, 3, 25, 7, 26syl22anc 1239 . . . . 5 (𝜑 → (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆))
28 dvfgg 13939 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝐹𝑓 + 𝐺)):dom (𝑆 D (𝐹𝑓 + 𝐺))⟶ℂ)
293, 27, 28syl2anc 411 . . . 4 (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)):dom (𝑆 D (𝐹𝑓 + 𝐺))⟶ℂ)
30 recnprss 13938 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
313, 30syl 14 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
3231, 25, 7dvbss 13936 . . . . . 6 (𝜑 → dom (𝑆 D (𝐹𝑓 + 𝐺)) ⊆ 𝑋)
33 reldvg 13930 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D (𝐹𝑓 + 𝐺)))
3431, 27, 33syl2anc 411 . . . . . . . 8 (𝜑 → Rel (𝑆 D (𝐹𝑓 + 𝐺)))
3534adantr 276 . . . . . . 7 ((𝜑𝑥𝑋) → Rel (𝑆 D (𝐹𝑓 + 𝐺)))
366adantr 276 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐹:𝑋⟶ℂ)
377adantr 276 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑋𝑆)
3815adantr 276 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐺:𝑋⟶ℂ)
3931adantr 276 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑆 ⊆ ℂ)
4012eleq2d 2247 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥𝑋))
4140biimpar 297 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹))
42 ffun 5365 . . . . . . . . . . 11 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
43 funfvbrb 5626 . . . . . . . . . . 11 (Fun (𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4411, 42, 433syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4544adantr 276 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4641, 45mpbid 147 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))
4720eleq2d 2247 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥𝑋))
4847biimpar 297 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺))
49 ffun 5365 . . . . . . . . . . 11 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
50 funfvbrb 5626 . . . . . . . . . . 11 (Fun (𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5119, 49, 503syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5251adantr 276 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5348, 52mpbid 147 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))
54 eqid 2177 . . . . . . . 8 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
5536, 37, 38, 39, 46, 53, 54dvaddxxbr 13947 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥(𝑆 D (𝐹𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)))
56 releldm 4859 . . . . . . 7 ((Rel (𝑆 D (𝐹𝑓 + 𝐺)) ∧ 𝑥(𝑆 D (𝐹𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥))) → 𝑥 ∈ dom (𝑆 D (𝐹𝑓 + 𝐺)))
5735, 55, 56syl2anc 411 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹𝑓 + 𝐺)))
5832, 57eqelssd 3174 . . . . 5 (𝜑 → dom (𝑆 D (𝐹𝑓 + 𝐺)) = 𝑋)
5958feq2d 5350 . . . 4 (𝜑 → ((𝑆 D (𝐹𝑓 + 𝐺)):dom (𝑆 D (𝐹𝑓 + 𝐺))⟶ℂ ↔ (𝑆 D (𝐹𝑓 + 𝐺)):𝑋⟶ℂ))
6029, 59mpbid 147 . . 3 (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)):𝑋⟶ℂ)
61 eqidd 2178 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑆 D 𝐹)‘𝑥))
62 eqidd 2178 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) = ((𝑆 D 𝐺)‘𝑥))
633adantr 276 . . . . 5 ((𝜑𝑥𝑋) → 𝑆 ∈ {ℝ, ℂ})
6436, 37, 38, 63, 41, 48dvaddxx 13949 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D (𝐹𝑓 + 𝐺))‘𝑥) = (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)))
6564eqcomd 2183 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)) = ((𝑆 D (𝐹𝑓 + 𝐺))‘𝑥))
662, 14, 22, 23, 23, 24, 60, 61, 62, 65offeq 6091 . 2 (𝜑 → ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)) = (𝑆 D (𝐹𝑓 + 𝐺)))
6766eqcomd 2183 1 (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)) = ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  Vcvv 2737  wss 3129  {cpr 3593   class class class wbr 4001  dom cdm 4624  ccom 4628  Rel wrel 4629  Fun wfun 5207  wf 5209  cfv 5213  (class class class)co 5870  𝑓 cof 6076  pm cpm 6644  cc 7804  cr 7805   + caddc 7809  cmin 8122  abscabs 10997  MetOpencmopn 13250   D cdv 13906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4116  ax-sep 4119  ax-nul 4127  ax-pow 4172  ax-pr 4207  ax-un 4431  ax-setind 4534  ax-iinf 4585  ax-cnex 7897  ax-resscn 7898  ax-1cn 7899  ax-1re 7900  ax-icn 7901  ax-addcl 7902  ax-addrcl 7903  ax-mulcl 7904  ax-mulrcl 7905  ax-addcom 7906  ax-mulcom 7907  ax-addass 7908  ax-mulass 7909  ax-distr 7910  ax-i2m1 7911  ax-0lt1 7912  ax-1rid 7913  ax-0id 7914  ax-rnegex 7915  ax-precex 7916  ax-cnre 7917  ax-pre-ltirr 7918  ax-pre-ltwlin 7919  ax-pre-lttrn 7920  ax-pre-apti 7921  ax-pre-ltadd 7922  ax-pre-mulgt0 7923  ax-pre-mulext 7924  ax-arch 7925  ax-caucvg 7926  ax-addf 7928
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3809  df-int 3844  df-iun 3887  df-br 4002  df-opab 4063  df-mpt 4064  df-tr 4100  df-id 4291  df-po 4294  df-iso 4295  df-iord 4364  df-on 4366  df-ilim 4367  df-suc 4369  df-iom 4588  df-xp 4630  df-rel 4631  df-cnv 4632  df-co 4633  df-dm 4634  df-rn 4635  df-res 4636  df-ima 4637  df-iota 5175  df-fun 5215  df-fn 5216  df-f 5217  df-f1 5218  df-fo 5219  df-f1o 5220  df-fv 5221  df-isom 5222  df-riota 5826  df-ov 5873  df-oprab 5874  df-mpo 5875  df-of 6078  df-1st 6136  df-2nd 6137  df-recs 6301  df-frec 6387  df-map 6645  df-pm 6646  df-sup 6978  df-inf 6979  df-pnf 7988  df-mnf 7989  df-xr 7990  df-ltxr 7991  df-le 7992  df-sub 8124  df-neg 8125  df-reap 8526  df-ap 8533  df-div 8624  df-inn 8914  df-2 8972  df-3 8973  df-4 8974  df-n0 9171  df-z 9248  df-uz 9523  df-q 9614  df-rp 9648  df-xneg 9766  df-xadd 9767  df-seqfrec 10439  df-exp 10513  df-cj 10842  df-re 10843  df-im 10844  df-rsqrt 10998  df-abs 10999  df-rest 12676  df-topgen 12695  df-psmet 13252  df-xmet 13253  df-met 13254  df-bl 13255  df-mopn 13256  df-top 13278  df-topon 13291  df-bases 13323  df-ntr 13378  df-cn 13470  df-cnp 13471  df-tx 13535  df-limced 13907  df-dvap 13908
This theorem is referenced by:  dvmptaddx  13963
  Copyright terms: Public domain W3C validator