ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dviaddf GIF version

Theorem dviaddf 13309
Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dviaddf.x (𝜑𝑋𝑆)
dvaddf.f (𝜑𝐹:𝑋⟶ℂ)
dvaddf.g (𝜑𝐺:𝑋⟶ℂ)
dvaddf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvaddf.dg (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dviaddf (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)) = ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)))

Proof of Theorem dviaddf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 7878 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
21adantl 275 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
3 dvaddf.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
4 cnex 7877 . . . . . . 7 ℂ ∈ V
54a1i 9 . . . . . 6 (𝜑 → ℂ ∈ V)
6 dvaddf.f . . . . . 6 (𝜑𝐹:𝑋⟶ℂ)
7 dviaddf.x . . . . . 6 (𝜑𝑋𝑆)
8 elpm2r 6632 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
95, 3, 6, 7, 8syl22anc 1229 . . . . 5 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
10 dvfgg 13297 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
113, 9, 10syl2anc 409 . . . 4 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
12 dvaddf.df . . . . 5 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
1312feq2d 5325 . . . 4 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
1411, 13mpbid 146 . . 3 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
15 dvaddf.g . . . . . 6 (𝜑𝐺:𝑋⟶ℂ)
16 elpm2r 6632 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆))
175, 3, 15, 7, 16syl22anc 1229 . . . . 5 (𝜑𝐺 ∈ (ℂ ↑pm 𝑆))
18 dvfgg 13297 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
193, 17, 18syl2anc 409 . . . 4 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
20 dvaddf.dg . . . . 5 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
2120feq2d 5325 . . . 4 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
2219, 21mpbid 146 . . 3 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
233, 7ssexd 4122 . . 3 (𝜑𝑋 ∈ V)
24 inidm 3331 . . 3 (𝑋𝑋) = 𝑋
252, 6, 15, 23, 23, 24off 6062 . . . . . 6 (𝜑 → (𝐹𝑓 + 𝐺):𝑋⟶ℂ)
26 elpm2r 6632 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹𝑓 + 𝐺):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆))
275, 3, 25, 7, 26syl22anc 1229 . . . . 5 (𝜑 → (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆))
28 dvfgg 13297 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝐹𝑓 + 𝐺)):dom (𝑆 D (𝐹𝑓 + 𝐺))⟶ℂ)
293, 27, 28syl2anc 409 . . . 4 (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)):dom (𝑆 D (𝐹𝑓 + 𝐺))⟶ℂ)
30 recnprss 13296 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
313, 30syl 14 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
3231, 25, 7dvbss 13294 . . . . . 6 (𝜑 → dom (𝑆 D (𝐹𝑓 + 𝐺)) ⊆ 𝑋)
33 reldvg 13288 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D (𝐹𝑓 + 𝐺)))
3431, 27, 33syl2anc 409 . . . . . . . 8 (𝜑 → Rel (𝑆 D (𝐹𝑓 + 𝐺)))
3534adantr 274 . . . . . . 7 ((𝜑𝑥𝑋) → Rel (𝑆 D (𝐹𝑓 + 𝐺)))
366adantr 274 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐹:𝑋⟶ℂ)
377adantr 274 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑋𝑆)
3815adantr 274 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐺:𝑋⟶ℂ)
3931adantr 274 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑆 ⊆ ℂ)
4012eleq2d 2236 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥𝑋))
4140biimpar 295 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹))
42 ffun 5340 . . . . . . . . . . 11 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
43 funfvbrb 5598 . . . . . . . . . . 11 (Fun (𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4411, 42, 433syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4544adantr 274 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4641, 45mpbid 146 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))
4720eleq2d 2236 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥𝑋))
4847biimpar 295 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺))
49 ffun 5340 . . . . . . . . . . 11 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
50 funfvbrb 5598 . . . . . . . . . . 11 (Fun (𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5119, 49, 503syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5251adantr 274 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5348, 52mpbid 146 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))
54 eqid 2165 . . . . . . . 8 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
5536, 37, 38, 39, 46, 53, 54dvaddxxbr 13305 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥(𝑆 D (𝐹𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)))
56 releldm 4839 . . . . . . 7 ((Rel (𝑆 D (𝐹𝑓 + 𝐺)) ∧ 𝑥(𝑆 D (𝐹𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥))) → 𝑥 ∈ dom (𝑆 D (𝐹𝑓 + 𝐺)))
5735, 55, 56syl2anc 409 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹𝑓 + 𝐺)))
5832, 57eqelssd 3161 . . . . 5 (𝜑 → dom (𝑆 D (𝐹𝑓 + 𝐺)) = 𝑋)
5958feq2d 5325 . . . 4 (𝜑 → ((𝑆 D (𝐹𝑓 + 𝐺)):dom (𝑆 D (𝐹𝑓 + 𝐺))⟶ℂ ↔ (𝑆 D (𝐹𝑓 + 𝐺)):𝑋⟶ℂ))
6029, 59mpbid 146 . . 3 (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)):𝑋⟶ℂ)
61 eqidd 2166 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑆 D 𝐹)‘𝑥))
62 eqidd 2166 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) = ((𝑆 D 𝐺)‘𝑥))
633adantr 274 . . . . 5 ((𝜑𝑥𝑋) → 𝑆 ∈ {ℝ, ℂ})
6436, 37, 38, 63, 41, 48dvaddxx 13307 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D (𝐹𝑓 + 𝐺))‘𝑥) = (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)))
6564eqcomd 2171 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)) = ((𝑆 D (𝐹𝑓 + 𝐺))‘𝑥))
662, 14, 22, 23, 23, 24, 60, 61, 62, 65offeq 6063 . 2 (𝜑 → ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)) = (𝑆 D (𝐹𝑓 + 𝐺)))
6766eqcomd 2171 1 (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)) = ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  Vcvv 2726  wss 3116  {cpr 3577   class class class wbr 3982  dom cdm 4604  ccom 4608  Rel wrel 4609  Fun wfun 5182  wf 5184  cfv 5188  (class class class)co 5842  𝑓 cof 6048  pm cpm 6615  cc 7751  cr 7752   + caddc 7756  cmin 8069  abscabs 10939  MetOpencmopn 12625   D cdv 13264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-addf 7875
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-pm 6617  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-ntr 12736  df-cn 12828  df-cnp 12829  df-tx 12893  df-limced 13265  df-dvap 13266
This theorem is referenced by:  dvmptaddx  13321
  Copyright terms: Public domain W3C validator