Step | Hyp | Ref
| Expression |
1 | | addcl 7840 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
2 | 1 | adantl 275 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
3 | | dvaddf.s |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
4 | | cnex 7839 |
. . . . . . 7
⊢ ℂ
∈ V |
5 | 4 | a1i 9 |
. . . . . 6
⊢ (𝜑 → ℂ ∈
V) |
6 | | dvaddf.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
7 | | dviaddf.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
8 | | elpm2r 6604 |
. . . . . 6
⊢
(((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm
𝑆)) |
9 | 5, 3, 6, 7, 8 | syl22anc 1221 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
𝑆)) |
10 | | dvfgg 13017 |
. . . . 5
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
11 | 3, 9, 10 | syl2anc 409 |
. . . 4
⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
12 | | dvaddf.df |
. . . . 5
⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
13 | 12 | feq2d 5304 |
. . . 4
⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
14 | 11, 13 | mpbid 146 |
. . 3
⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
15 | | dvaddf.g |
. . . . . 6
⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
16 | | elpm2r 6604 |
. . . . . 6
⊢
(((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → 𝐺 ∈ (ℂ ↑pm
𝑆)) |
17 | 5, 3, 15, 7, 16 | syl22anc 1221 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ (ℂ ↑pm
𝑆)) |
18 | | dvfgg 13017 |
. . . . 5
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐺 ∈ (ℂ
↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
19 | 3, 17, 18 | syl2anc 409 |
. . . 4
⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
20 | | dvaddf.dg |
. . . . 5
⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
21 | 20 | feq2d 5304 |
. . . 4
⊢ (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ)) |
22 | 19, 21 | mpbid 146 |
. . 3
⊢ (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ) |
23 | 3, 7 | ssexd 4104 |
. . 3
⊢ (𝜑 → 𝑋 ∈ V) |
24 | | inidm 3316 |
. . 3
⊢ (𝑋 ∩ 𝑋) = 𝑋 |
25 | 2, 6, 15, 23, 23, 24 | off 6038 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺):𝑋⟶ℂ) |
26 | | elpm2r 6604 |
. . . . . 6
⊢
(((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹 ∘𝑓 +
𝐺):𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → (𝐹 ∘𝑓 + 𝐺) ∈ (ℂ
↑pm 𝑆)) |
27 | 5, 3, 25, 7, 26 | syl22anc 1221 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (ℂ
↑pm 𝑆)) |
28 | | dvfgg 13017 |
. . . . 5
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
(𝐹
∘𝑓 + 𝐺) ∈ (ℂ ↑pm
𝑆)) → (𝑆 D (𝐹 ∘𝑓 + 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 + 𝐺))⟶ℂ) |
29 | 3, 27, 28 | syl2anc 409 |
. . . 4
⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 + 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 + 𝐺))⟶ℂ) |
30 | | recnprss 13016 |
. . . . . . . 8
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
31 | 3, 30 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
32 | 31, 25, 7 | dvbss 13014 |
. . . . . 6
⊢ (𝜑 → dom (𝑆 D (𝐹 ∘𝑓 + 𝐺)) ⊆ 𝑋) |
33 | | reldvg 13008 |
. . . . . . . . 9
⊢ ((𝑆 ⊆ ℂ ∧ (𝐹 ∘𝑓 +
𝐺) ∈ (ℂ
↑pm 𝑆)) → Rel (𝑆 D (𝐹 ∘𝑓 + 𝐺))) |
34 | 31, 27, 33 | syl2anc 409 |
. . . . . . . 8
⊢ (𝜑 → Rel (𝑆 D (𝐹 ∘𝑓 + 𝐺))) |
35 | 34 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Rel (𝑆 D (𝐹 ∘𝑓 + 𝐺))) |
36 | 6 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐹:𝑋⟶ℂ) |
37 | 7 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑋 ⊆ 𝑆) |
38 | 15 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐺:𝑋⟶ℂ) |
39 | 31 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑆 ⊆ ℂ) |
40 | 12 | eleq2d 2227 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥 ∈ 𝑋)) |
41 | 40 | biimpar 295 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹)) |
42 | | ffun 5319 |
. . . . . . . . . . 11
⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) |
43 | | funfvbrb 5577 |
. . . . . . . . . . 11
⊢ (Fun
(𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))) |
44 | 11, 42, 43 | 3syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))) |
45 | 44 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))) |
46 | 41, 45 | mpbid 146 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)) |
47 | 20 | eleq2d 2227 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥 ∈ 𝑋)) |
48 | 47 | biimpar 295 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺)) |
49 | | ffun 5319 |
. . . . . . . . . . 11
⊢ ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺)) |
50 | | funfvbrb 5577 |
. . . . . . . . . . 11
⊢ (Fun
(𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))) |
51 | 19, 49, 50 | 3syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))) |
52 | 51 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))) |
53 | 48, 52 | mpbid 146 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)) |
54 | | eqid 2157 |
. . . . . . . 8
⊢
(MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘
− )) |
55 | 36, 37, 38, 39, 46, 53, 54 | dvaddxxbr 13025 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D (𝐹 ∘𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥))) |
56 | | releldm 4818 |
. . . . . . 7
⊢ ((Rel
(𝑆 D (𝐹 ∘𝑓 + 𝐺)) ∧ 𝑥(𝑆 D (𝐹 ∘𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥))) → 𝑥 ∈ dom (𝑆 D (𝐹 ∘𝑓 + 𝐺))) |
57 | 35, 55, 56 | syl2anc 409 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹 ∘𝑓 + 𝐺))) |
58 | 32, 57 | eqelssd 3147 |
. . . . 5
⊢ (𝜑 → dom (𝑆 D (𝐹 ∘𝑓 + 𝐺)) = 𝑋) |
59 | 58 | feq2d 5304 |
. . . 4
⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 + 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 + 𝐺))⟶ℂ ↔ (𝑆 D (𝐹 ∘𝑓 + 𝐺)):𝑋⟶ℂ)) |
60 | 29, 59 | mpbid 146 |
. . 3
⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 + 𝐺)):𝑋⟶ℂ) |
61 | | eqidd 2158 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑆 D 𝐹)‘𝑥)) |
62 | | eqidd 2158 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐺)‘𝑥) = ((𝑆 D 𝐺)‘𝑥)) |
63 | 3 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑆 ∈ {ℝ, ℂ}) |
64 | 36, 37, 38, 63, 41, 48 | dvaddxx 13027 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D (𝐹 ∘𝑓 + 𝐺))‘𝑥) = (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥))) |
65 | 64 | eqcomd 2163 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)) = ((𝑆 D (𝐹 ∘𝑓 + 𝐺))‘𝑥)) |
66 | 2, 14, 22, 23, 23, 24, 60, 61, 62, 65 | offeq 6039 |
. 2
⊢ (𝜑 → ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)) = (𝑆 D (𝐹 ∘𝑓 + 𝐺))) |
67 | 66 | eqcomd 2163 |
1
⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 + 𝐺)) = ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺))) |