ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dviaddf GIF version

Theorem dviaddf 15095
Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dviaddf.x (𝜑𝑋𝑆)
dvaddf.f (𝜑𝐹:𝑋⟶ℂ)
dvaddf.g (𝜑𝐺:𝑋⟶ℂ)
dvaddf.df (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvaddf.dg (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dviaddf (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)) = ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)))

Proof of Theorem dviaddf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 8032 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
21adantl 277 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
3 dvaddf.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
4 cnex 8031 . . . . . . 7 ℂ ∈ V
54a1i 9 . . . . . 6 (𝜑 → ℂ ∈ V)
6 dvaddf.f . . . . . 6 (𝜑𝐹:𝑋⟶ℂ)
7 dviaddf.x . . . . . 6 (𝜑𝑋𝑆)
8 elpm2r 6743 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
95, 3, 6, 7, 8syl22anc 1250 . . . . 5 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
10 dvfgg 15078 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
113, 9, 10syl2anc 411 . . . 4 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
12 dvaddf.df . . . . 5 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
1312feq2d 5407 . . . 4 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
1411, 13mpbid 147 . . 3 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
15 dvaddf.g . . . . . 6 (𝜑𝐺:𝑋⟶ℂ)
16 elpm2r 6743 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆))
175, 3, 15, 7, 16syl22anc 1250 . . . . 5 (𝜑𝐺 ∈ (ℂ ↑pm 𝑆))
18 dvfgg 15078 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
193, 17, 18syl2anc 411 . . . 4 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
20 dvaddf.dg . . . . 5 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
2120feq2d 5407 . . . 4 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
2219, 21mpbid 147 . . 3 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
233, 7ssexd 4183 . . 3 (𝜑𝑋 ∈ V)
24 inidm 3381 . . 3 (𝑋𝑋) = 𝑋
252, 6, 15, 23, 23, 24off 6161 . . . . . 6 (𝜑 → (𝐹𝑓 + 𝐺):𝑋⟶ℂ)
26 elpm2r 6743 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹𝑓 + 𝐺):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆))
275, 3, 25, 7, 26syl22anc 1250 . . . . 5 (𝜑 → (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆))
28 dvfgg 15078 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝐹𝑓 + 𝐺)):dom (𝑆 D (𝐹𝑓 + 𝐺))⟶ℂ)
293, 27, 28syl2anc 411 . . . 4 (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)):dom (𝑆 D (𝐹𝑓 + 𝐺))⟶ℂ)
30 recnprss 15077 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
313, 30syl 14 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
3231, 25, 7dvbss 15075 . . . . . 6 (𝜑 → dom (𝑆 D (𝐹𝑓 + 𝐺)) ⊆ 𝑋)
33 reldvg 15069 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D (𝐹𝑓 + 𝐺)))
3431, 27, 33syl2anc 411 . . . . . . . 8 (𝜑 → Rel (𝑆 D (𝐹𝑓 + 𝐺)))
3534adantr 276 . . . . . . 7 ((𝜑𝑥𝑋) → Rel (𝑆 D (𝐹𝑓 + 𝐺)))
366adantr 276 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐹:𝑋⟶ℂ)
377adantr 276 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑋𝑆)
3815adantr 276 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐺:𝑋⟶ℂ)
3931adantr 276 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑆 ⊆ ℂ)
4012eleq2d 2274 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥𝑋))
4140biimpar 297 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹))
42 ffun 5422 . . . . . . . . . . 11 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
43 funfvbrb 5687 . . . . . . . . . . 11 (Fun (𝑆 D 𝐹) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4411, 42, 433syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4544adantr 276 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐹) ↔ 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥)))
4641, 45mpbid 147 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝑥))
4720eleq2d 2274 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥𝑋))
4847biimpar 297 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐺))
49 ffun 5422 . . . . . . . . . . 11 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
50 funfvbrb 5687 . . . . . . . . . . 11 (Fun (𝑆 D 𝐺) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5119, 49, 503syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5251adantr 276 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑥 ∈ dom (𝑆 D 𝐺) ↔ 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥)))
5348, 52mpbid 147 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝑥))
54 eqid 2204 . . . . . . . 8 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
5536, 37, 38, 39, 46, 53, 54dvaddxxbr 15091 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥(𝑆 D (𝐹𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)))
56 releldm 4911 . . . . . . 7 ((Rel (𝑆 D (𝐹𝑓 + 𝐺)) ∧ 𝑥(𝑆 D (𝐹𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥))) → 𝑥 ∈ dom (𝑆 D (𝐹𝑓 + 𝐺)))
5735, 55, 56syl2anc 411 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D (𝐹𝑓 + 𝐺)))
5832, 57eqelssd 3211 . . . . 5 (𝜑 → dom (𝑆 D (𝐹𝑓 + 𝐺)) = 𝑋)
5958feq2d 5407 . . . 4 (𝜑 → ((𝑆 D (𝐹𝑓 + 𝐺)):dom (𝑆 D (𝐹𝑓 + 𝐺))⟶ℂ ↔ (𝑆 D (𝐹𝑓 + 𝐺)):𝑋⟶ℂ))
6029, 59mpbid 147 . . 3 (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)):𝑋⟶ℂ)
61 eqidd 2205 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑆 D 𝐹)‘𝑥))
62 eqidd 2205 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) = ((𝑆 D 𝐺)‘𝑥))
633adantr 276 . . . . 5 ((𝜑𝑥𝑋) → 𝑆 ∈ {ℝ, ℂ})
6436, 37, 38, 63, 41, 48dvaddxx 15093 . . . 4 ((𝜑𝑥𝑋) → ((𝑆 D (𝐹𝑓 + 𝐺))‘𝑥) = (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)))
6564eqcomd 2210 . . 3 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) + ((𝑆 D 𝐺)‘𝑥)) = ((𝑆 D (𝐹𝑓 + 𝐺))‘𝑥))
662, 14, 22, 23, 23, 24, 60, 61, 62, 65offeq 6162 . 2 (𝜑 → ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)) = (𝑆 D (𝐹𝑓 + 𝐺)))
6766eqcomd 2210 1 (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)) = ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  Vcvv 2771  wss 3165  {cpr 3633   class class class wbr 4043  dom cdm 4673  ccom 4677  Rel wrel 4678  Fun wfun 5262  wf 5264  cfv 5268  (class class class)co 5934  𝑓 cof 6146  pm cpm 6726  cc 7905  cr 7906   + caddc 7910  cmin 8225  abscabs 11227  MetOpencmopn 14221   D cdv 15045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027  ax-addf 8029
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-of 6148  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-map 6727  df-pm 6728  df-sup 7068  df-inf 7069  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-xneg 9876  df-xadd 9877  df-seqfrec 10574  df-exp 10665  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-rest 12991  df-topgen 13010  df-psmet 14223  df-xmet 14224  df-met 14225  df-bl 14226  df-mopn 14227  df-top 14388  df-topon 14401  df-bases 14433  df-ntr 14486  df-cn 14578  df-cnp 14579  df-tx 14643  df-limced 15046  df-dvap 15047
This theorem is referenced by:  dvmptaddx  15109
  Copyright terms: Public domain W3C validator