Step | Hyp | Ref
| Expression |
1 | | addcl 7938 |
. . . 4
β’ ((π₯ β β β§ π¦ β β) β (π₯ + π¦) β β) |
2 | 1 | adantl 277 |
. . 3
β’ ((π β§ (π₯ β β β§ π¦ β β)) β (π₯ + π¦) β β) |
3 | | dvaddf.s |
. . . . 5
β’ (π β π β {β, β}) |
4 | | cnex 7937 |
. . . . . . 7
β’ β
β V |
5 | 4 | a1i 9 |
. . . . . 6
β’ (π β β β
V) |
6 | | dvaddf.f |
. . . . . 6
β’ (π β πΉ:πβΆβ) |
7 | | dviaddf.x |
. . . . . 6
β’ (π β π β π) |
8 | | elpm2r 6668 |
. . . . . 6
β’
(((β β V β§ π β {β, β}) β§ (πΉ:πβΆβ β§ π β π)) β πΉ β (β βpm
π)) |
9 | 5, 3, 6, 7, 8 | syl22anc 1239 |
. . . . 5
β’ (π β πΉ β (β βpm
π)) |
10 | | dvfgg 14196 |
. . . . 5
β’ ((π β {β, β} β§
πΉ β (β
βpm π)) β (π D πΉ):dom (π D πΉ)βΆβ) |
11 | 3, 9, 10 | syl2anc 411 |
. . . 4
β’ (π β (π D πΉ):dom (π D πΉ)βΆβ) |
12 | | dvaddf.df |
. . . . 5
β’ (π β dom (π D πΉ) = π) |
13 | 12 | feq2d 5355 |
. . . 4
β’ (π β ((π D πΉ):dom (π D πΉ)βΆβ β (π D πΉ):πβΆβ)) |
14 | 11, 13 | mpbid 147 |
. . 3
β’ (π β (π D πΉ):πβΆβ) |
15 | | dvaddf.g |
. . . . . 6
β’ (π β πΊ:πβΆβ) |
16 | | elpm2r 6668 |
. . . . . 6
β’
(((β β V β§ π β {β, β}) β§ (πΊ:πβΆβ β§ π β π)) β πΊ β (β βpm
π)) |
17 | 5, 3, 15, 7, 16 | syl22anc 1239 |
. . . . 5
β’ (π β πΊ β (β βpm
π)) |
18 | | dvfgg 14196 |
. . . . 5
β’ ((π β {β, β} β§
πΊ β (β
βpm π)) β (π D πΊ):dom (π D πΊ)βΆβ) |
19 | 3, 17, 18 | syl2anc 411 |
. . . 4
β’ (π β (π D πΊ):dom (π D πΊ)βΆβ) |
20 | | dvaddf.dg |
. . . . 5
β’ (π β dom (π D πΊ) = π) |
21 | 20 | feq2d 5355 |
. . . 4
β’ (π β ((π D πΊ):dom (π D πΊ)βΆβ β (π D πΊ):πβΆβ)) |
22 | 19, 21 | mpbid 147 |
. . 3
β’ (π β (π D πΊ):πβΆβ) |
23 | 3, 7 | ssexd 4145 |
. . 3
β’ (π β π β V) |
24 | | inidm 3346 |
. . 3
β’ (π β© π) = π |
25 | 2, 6, 15, 23, 23, 24 | off 6097 |
. . . . . 6
β’ (π β (πΉ βπ + πΊ):πβΆβ) |
26 | | elpm2r 6668 |
. . . . . 6
β’
(((β β V β§ π β {β, β}) β§ ((πΉ βπ +
πΊ):πβΆβ β§ π β π)) β (πΉ βπ + πΊ) β (β
βpm π)) |
27 | 5, 3, 25, 7, 26 | syl22anc 1239 |
. . . . 5
β’ (π β (πΉ βπ + πΊ) β (β
βpm π)) |
28 | | dvfgg 14196 |
. . . . 5
β’ ((π β {β, β} β§
(πΉ
βπ + πΊ) β (β βpm
π)) β (π D (πΉ βπ + πΊ)):dom (π D (πΉ βπ + πΊ))βΆβ) |
29 | 3, 27, 28 | syl2anc 411 |
. . . 4
β’ (π β (π D (πΉ βπ + πΊ)):dom (π D (πΉ βπ + πΊ))βΆβ) |
30 | | recnprss 14195 |
. . . . . . . 8
β’ (π β {β, β}
β π β
β) |
31 | 3, 30 | syl 14 |
. . . . . . 7
β’ (π β π β β) |
32 | 31, 25, 7 | dvbss 14193 |
. . . . . 6
β’ (π β dom (π D (πΉ βπ + πΊ)) β π) |
33 | | reldvg 14187 |
. . . . . . . . 9
β’ ((π β β β§ (πΉ βπ +
πΊ) β (β
βpm π)) β Rel (π D (πΉ βπ + πΊ))) |
34 | 31, 27, 33 | syl2anc 411 |
. . . . . . . 8
β’ (π β Rel (π D (πΉ βπ + πΊ))) |
35 | 34 | adantr 276 |
. . . . . . 7
β’ ((π β§ π₯ β π) β Rel (π D (πΉ βπ + πΊ))) |
36 | 6 | adantr 276 |
. . . . . . . 8
β’ ((π β§ π₯ β π) β πΉ:πβΆβ) |
37 | 7 | adantr 276 |
. . . . . . . 8
β’ ((π β§ π₯ β π) β π β π) |
38 | 15 | adantr 276 |
. . . . . . . 8
β’ ((π β§ π₯ β π) β πΊ:πβΆβ) |
39 | 31 | adantr 276 |
. . . . . . . 8
β’ ((π β§ π₯ β π) β π β β) |
40 | 12 | eleq2d 2247 |
. . . . . . . . . 10
β’ (π β (π₯ β dom (π D πΉ) β π₯ β π)) |
41 | 40 | biimpar 297 |
. . . . . . . . 9
β’ ((π β§ π₯ β π) β π₯ β dom (π D πΉ)) |
42 | | ffun 5370 |
. . . . . . . . . . 11
β’ ((π D πΉ):dom (π D πΉ)βΆβ β Fun (π D πΉ)) |
43 | | funfvbrb 5631 |
. . . . . . . . . . 11
β’ (Fun
(π D πΉ) β (π₯ β dom (π D πΉ) β π₯(π D πΉ)((π D πΉ)βπ₯))) |
44 | 11, 42, 43 | 3syl 17 |
. . . . . . . . . 10
β’ (π β (π₯ β dom (π D πΉ) β π₯(π D πΉ)((π D πΉ)βπ₯))) |
45 | 44 | adantr 276 |
. . . . . . . . 9
β’ ((π β§ π₯ β π) β (π₯ β dom (π D πΉ) β π₯(π D πΉ)((π D πΉ)βπ₯))) |
46 | 41, 45 | mpbid 147 |
. . . . . . . 8
β’ ((π β§ π₯ β π) β π₯(π D πΉ)((π D πΉ)βπ₯)) |
47 | 20 | eleq2d 2247 |
. . . . . . . . . 10
β’ (π β (π₯ β dom (π D πΊ) β π₯ β π)) |
48 | 47 | biimpar 297 |
. . . . . . . . 9
β’ ((π β§ π₯ β π) β π₯ β dom (π D πΊ)) |
49 | | ffun 5370 |
. . . . . . . . . . 11
β’ ((π D πΊ):dom (π D πΊ)βΆβ β Fun (π D πΊ)) |
50 | | funfvbrb 5631 |
. . . . . . . . . . 11
β’ (Fun
(π D πΊ) β (π₯ β dom (π D πΊ) β π₯(π D πΊ)((π D πΊ)βπ₯))) |
51 | 19, 49, 50 | 3syl 17 |
. . . . . . . . . 10
β’ (π β (π₯ β dom (π D πΊ) β π₯(π D πΊ)((π D πΊ)βπ₯))) |
52 | 51 | adantr 276 |
. . . . . . . . 9
β’ ((π β§ π₯ β π) β (π₯ β dom (π D πΊ) β π₯(π D πΊ)((π D πΊ)βπ₯))) |
53 | 48, 52 | mpbid 147 |
. . . . . . . 8
β’ ((π β§ π₯ β π) β π₯(π D πΊ)((π D πΊ)βπ₯)) |
54 | | eqid 2177 |
. . . . . . . 8
β’
(MetOpenβ(abs β β )) = (MetOpenβ(abs β
β )) |
55 | 36, 37, 38, 39, 46, 53, 54 | dvaddxxbr 14204 |
. . . . . . 7
β’ ((π β§ π₯ β π) β π₯(π D (πΉ βπ + πΊ))(((π D πΉ)βπ₯) + ((π D πΊ)βπ₯))) |
56 | | releldm 4864 |
. . . . . . 7
β’ ((Rel
(π D (πΉ βπ + πΊ)) β§ π₯(π D (πΉ βπ + πΊ))(((π D πΉ)βπ₯) + ((π D πΊ)βπ₯))) β π₯ β dom (π D (πΉ βπ + πΊ))) |
57 | 35, 55, 56 | syl2anc 411 |
. . . . . 6
β’ ((π β§ π₯ β π) β π₯ β dom (π D (πΉ βπ + πΊ))) |
58 | 32, 57 | eqelssd 3176 |
. . . . 5
β’ (π β dom (π D (πΉ βπ + πΊ)) = π) |
59 | 58 | feq2d 5355 |
. . . 4
β’ (π β ((π D (πΉ βπ + πΊ)):dom (π D (πΉ βπ + πΊ))βΆβ β (π D (πΉ βπ + πΊ)):πβΆβ)) |
60 | 29, 59 | mpbid 147 |
. . 3
β’ (π β (π D (πΉ βπ + πΊ)):πβΆβ) |
61 | | eqidd 2178 |
. . 3
β’ ((π β§ π₯ β π) β ((π D πΉ)βπ₯) = ((π D πΉ)βπ₯)) |
62 | | eqidd 2178 |
. . 3
β’ ((π β§ π₯ β π) β ((π D πΊ)βπ₯) = ((π D πΊ)βπ₯)) |
63 | 3 | adantr 276 |
. . . . 5
β’ ((π β§ π₯ β π) β π β {β, β}) |
64 | 36, 37, 38, 63, 41, 48 | dvaddxx 14206 |
. . . 4
β’ ((π β§ π₯ β π) β ((π D (πΉ βπ + πΊ))βπ₯) = (((π D πΉ)βπ₯) + ((π D πΊ)βπ₯))) |
65 | 64 | eqcomd 2183 |
. . 3
β’ ((π β§ π₯ β π) β (((π D πΉ)βπ₯) + ((π D πΊ)βπ₯)) = ((π D (πΉ βπ + πΊ))βπ₯)) |
66 | 2, 14, 22, 23, 23, 24, 60, 61, 62, 65 | offeq 6098 |
. 2
β’ (π β ((π D πΉ) βπ + (π D πΊ)) = (π D (πΉ βπ + πΊ))) |
67 | 66 | eqcomd 2183 |
1
β’ (π β (π D (πΉ βπ + πΊ)) = ((π D πΉ) βπ + (π D πΊ))) |