![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ennnfonelemdm | GIF version |
Description: Lemma for ennnfone 12582. The function 𝐿 is defined everywhere. (Contributed by Jim Kingdon, 16-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
ennnfone.l | ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) |
Ref | Expression |
---|---|
ennnfonelemdm | ⊢ (𝜑 → dom 𝐿 = ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfone.l | . . . . . . . . . . 11 ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) | |
2 | 1 | dmeqi 4863 | . . . . . . . . . 10 ⊢ dom 𝐿 = dom ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) |
3 | dmiun 4871 | . . . . . . . . . 10 ⊢ dom ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) = ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖) | |
4 | 2, 3 | eqtri 2214 | . . . . . . . . 9 ⊢ dom 𝐿 = ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖) |
5 | 4 | eleq2i 2260 | . . . . . . . 8 ⊢ (𝑚 ∈ dom 𝐿 ↔ 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
6 | 5 | biimpi 120 | . . . . . . 7 ⊢ (𝑚 ∈ dom 𝐿 → 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
7 | 6 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ dom 𝐿) → 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
8 | eliun 3916 | . . . . . 6 ⊢ (𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖) ↔ ∃𝑖 ∈ ℕ0 𝑚 ∈ dom (𝐻‘𝑖)) | |
9 | 7, 8 | sylib 122 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ dom 𝐿) → ∃𝑖 ∈ ℕ0 𝑚 ∈ dom (𝐻‘𝑖)) |
10 | simprr 531 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝑚 ∈ dom (𝐻‘𝑖)) | |
11 | ennnfonelemh.dceq | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
12 | 11 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
13 | ennnfonelemh.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
14 | 13 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝐹:ω–onto→𝐴) |
15 | ennnfonelemh.ne | . . . . . . . 8 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
16 | 15 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
17 | ennnfonelemh.g | . . . . . . 7 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | |
18 | ennnfonelemh.n | . . . . . . 7 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
19 | ennnfonelemh.j | . . . . . . 7 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
20 | ennnfonelemh.h | . . . . . . 7 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
21 | simprl 529 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝑖 ∈ ℕ0) | |
22 | 12, 14, 16, 17, 18, 19, 20, 21 | ennnfonelemom 12565 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → dom (𝐻‘𝑖) ∈ ω) |
23 | elnn 4638 | . . . . . 6 ⊢ ((𝑚 ∈ dom (𝐻‘𝑖) ∧ dom (𝐻‘𝑖) ∈ ω) → 𝑚 ∈ ω) | |
24 | 10, 22, 23 | syl2anc 411 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝑚 ∈ ω) |
25 | 9, 24 | rexlimddv 2616 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ dom 𝐿) → 𝑚 ∈ ω) |
26 | 25 | ex 115 | . . 3 ⊢ (𝜑 → (𝑚 ∈ dom 𝐿 → 𝑚 ∈ ω)) |
27 | 26 | ssrdv 3185 | . 2 ⊢ (𝜑 → dom 𝐿 ⊆ ω) |
28 | 11 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
29 | 13 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝐹:ω–onto→𝐴) |
30 | 15 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
31 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝑚 ∈ ω) | |
32 | 28, 29, 30, 17, 18, 19, 20, 31 | ennnfonelemhom 12572 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ∃𝑖 ∈ ℕ0 𝑚 ∈ dom (𝐻‘𝑖)) |
33 | 32, 8 | sylibr 134 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
34 | 33, 4 | eleqtrrdi 2287 | . 2 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝑚 ∈ dom 𝐿) |
35 | 27, 34 | eqelssd 3198 | 1 ⊢ (𝜑 → dom 𝐿 = ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∀wral 2472 ∃wrex 2473 ∪ cun 3151 ∅c0 3446 ifcif 3557 {csn 3618 〈cop 3621 ∪ ciun 3912 ↦ cmpt 4090 suc csuc 4396 ωcom 4622 ◡ccnv 4658 dom cdm 4659 “ cima 4662 –onto→wfo 5252 ‘cfv 5254 (class class class)co 5918 ∈ cmpo 5920 freccfrec 6443 ↑pm cpm 6703 0cc0 7872 1c1 7873 + caddc 7875 − cmin 8190 ℕ0cn0 9240 ℤcz 9317 seqcseq 10518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-pm 6705 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-seqfrec 10519 |
This theorem is referenced by: ennnfonelemen 12578 |
Copyright terms: Public domain | W3C validator |