| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemdm | GIF version | ||
| Description: Lemma for ennnfone 12911. The function 𝐿 is defined everywhere. (Contributed by Jim Kingdon, 16-Jul-2023.) |
| Ref | Expression |
|---|---|
| ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
| ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
| ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
| ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
| ennnfone.l | ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) |
| Ref | Expression |
|---|---|
| ennnfonelemdm | ⊢ (𝜑 → dom 𝐿 = ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ennnfone.l | . . . . . . . . . . 11 ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) | |
| 2 | 1 | dmeqi 4898 | . . . . . . . . . 10 ⊢ dom 𝐿 = dom ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) |
| 3 | dmiun 4906 | . . . . . . . . . 10 ⊢ dom ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) = ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖) | |
| 4 | 2, 3 | eqtri 2228 | . . . . . . . . 9 ⊢ dom 𝐿 = ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖) |
| 5 | 4 | eleq2i 2274 | . . . . . . . 8 ⊢ (𝑚 ∈ dom 𝐿 ↔ 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
| 6 | 5 | biimpi 120 | . . . . . . 7 ⊢ (𝑚 ∈ dom 𝐿 → 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
| 7 | 6 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ dom 𝐿) → 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
| 8 | eliun 3945 | . . . . . 6 ⊢ (𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖) ↔ ∃𝑖 ∈ ℕ0 𝑚 ∈ dom (𝐻‘𝑖)) | |
| 9 | 7, 8 | sylib 122 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ dom 𝐿) → ∃𝑖 ∈ ℕ0 𝑚 ∈ dom (𝐻‘𝑖)) |
| 10 | simprr 531 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝑚 ∈ dom (𝐻‘𝑖)) | |
| 11 | ennnfonelemh.dceq | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
| 12 | 11 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 13 | ennnfonelemh.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
| 14 | 13 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝐹:ω–onto→𝐴) |
| 15 | ennnfonelemh.ne | . . . . . . . 8 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
| 16 | 15 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| 17 | ennnfonelemh.g | . . . . . . 7 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | |
| 18 | ennnfonelemh.n | . . . . . . 7 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 19 | ennnfonelemh.j | . . . . . . 7 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
| 20 | ennnfonelemh.h | . . . . . . 7 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
| 21 | simprl 529 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝑖 ∈ ℕ0) | |
| 22 | 12, 14, 16, 17, 18, 19, 20, 21 | ennnfonelemom 12894 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → dom (𝐻‘𝑖) ∈ ω) |
| 23 | elnn 4672 | . . . . . 6 ⊢ ((𝑚 ∈ dom (𝐻‘𝑖) ∧ dom (𝐻‘𝑖) ∈ ω) → 𝑚 ∈ ω) | |
| 24 | 10, 22, 23 | syl2anc 411 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝑚 ∈ ω) |
| 25 | 9, 24 | rexlimddv 2630 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ dom 𝐿) → 𝑚 ∈ ω) |
| 26 | 25 | ex 115 | . . 3 ⊢ (𝜑 → (𝑚 ∈ dom 𝐿 → 𝑚 ∈ ω)) |
| 27 | 26 | ssrdv 3207 | . 2 ⊢ (𝜑 → dom 𝐿 ⊆ ω) |
| 28 | 11 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 29 | 13 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝐹:ω–onto→𝐴) |
| 30 | 15 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| 31 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝑚 ∈ ω) | |
| 32 | 28, 29, 30, 17, 18, 19, 20, 31 | ennnfonelemhom 12901 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ∃𝑖 ∈ ℕ0 𝑚 ∈ dom (𝐻‘𝑖)) |
| 33 | 32, 8 | sylibr 134 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
| 34 | 33, 4 | eleqtrrdi 2301 | . 2 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝑚 ∈ dom 𝐿) |
| 35 | 27, 34 | eqelssd 3220 | 1 ⊢ (𝜑 → dom 𝐿 = ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 836 = wceq 1373 ∈ wcel 2178 ≠ wne 2378 ∀wral 2486 ∃wrex 2487 ∪ cun 3172 ∅c0 3468 ifcif 3579 {csn 3643 〈cop 3646 ∪ ciun 3941 ↦ cmpt 4121 suc csuc 4430 ωcom 4656 ◡ccnv 4692 dom cdm 4693 “ cima 4696 –onto→wfo 5288 ‘cfv 5290 (class class class)co 5967 ∈ cmpo 5969 freccfrec 6499 ↑pm cpm 6759 0cc0 7960 1c1 7961 + caddc 7963 − cmin 8278 ℕ0cn0 9330 ℤcz 9407 seqcseq 10629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pm 6761 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-seqfrec 10630 |
| This theorem is referenced by: ennnfonelemen 12907 |
| Copyright terms: Public domain | W3C validator |