Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemdm | GIF version |
Description: Lemma for ennnfone 12380. The function 𝐿 is defined everywhere. (Contributed by Jim Kingdon, 16-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
ennnfone.l | ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) |
Ref | Expression |
---|---|
ennnfonelemdm | ⊢ (𝜑 → dom 𝐿 = ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfone.l | . . . . . . . . . . 11 ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) | |
2 | 1 | dmeqi 4812 | . . . . . . . . . 10 ⊢ dom 𝐿 = dom ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) |
3 | dmiun 4820 | . . . . . . . . . 10 ⊢ dom ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) = ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖) | |
4 | 2, 3 | eqtri 2191 | . . . . . . . . 9 ⊢ dom 𝐿 = ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖) |
5 | 4 | eleq2i 2237 | . . . . . . . 8 ⊢ (𝑚 ∈ dom 𝐿 ↔ 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
6 | 5 | biimpi 119 | . . . . . . 7 ⊢ (𝑚 ∈ dom 𝐿 → 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
7 | 6 | adantl 275 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ dom 𝐿) → 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
8 | eliun 3877 | . . . . . 6 ⊢ (𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖) ↔ ∃𝑖 ∈ ℕ0 𝑚 ∈ dom (𝐻‘𝑖)) | |
9 | 7, 8 | sylib 121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ dom 𝐿) → ∃𝑖 ∈ ℕ0 𝑚 ∈ dom (𝐻‘𝑖)) |
10 | simprr 527 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝑚 ∈ dom (𝐻‘𝑖)) | |
11 | ennnfonelemh.dceq | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
12 | 11 | ad2antrr 485 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
13 | ennnfonelemh.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
14 | 13 | ad2antrr 485 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝐹:ω–onto→𝐴) |
15 | ennnfonelemh.ne | . . . . . . . 8 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
16 | 15 | ad2antrr 485 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
17 | ennnfonelemh.g | . . . . . . 7 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | |
18 | ennnfonelemh.n | . . . . . . 7 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
19 | ennnfonelemh.j | . . . . . . 7 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
20 | ennnfonelemh.h | . . . . . . 7 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
21 | simprl 526 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝑖 ∈ ℕ0) | |
22 | 12, 14, 16, 17, 18, 19, 20, 21 | ennnfonelemom 12363 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → dom (𝐻‘𝑖) ∈ ω) |
23 | elnn 4590 | . . . . . 6 ⊢ ((𝑚 ∈ dom (𝐻‘𝑖) ∧ dom (𝐻‘𝑖) ∈ ω) → 𝑚 ∈ ω) | |
24 | 10, 22, 23 | syl2anc 409 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝑚 ∈ ω) |
25 | 9, 24 | rexlimddv 2592 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ dom 𝐿) → 𝑚 ∈ ω) |
26 | 25 | ex 114 | . . 3 ⊢ (𝜑 → (𝑚 ∈ dom 𝐿 → 𝑚 ∈ ω)) |
27 | 26 | ssrdv 3153 | . 2 ⊢ (𝜑 → dom 𝐿 ⊆ ω) |
28 | 11 | adantr 274 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
29 | 13 | adantr 274 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝐹:ω–onto→𝐴) |
30 | 15 | adantr 274 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
31 | simpr 109 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝑚 ∈ ω) | |
32 | 28, 29, 30, 17, 18, 19, 20, 31 | ennnfonelemhom 12370 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ∃𝑖 ∈ ℕ0 𝑚 ∈ dom (𝐻‘𝑖)) |
33 | 32, 8 | sylibr 133 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
34 | 33, 4 | eleqtrrdi 2264 | . 2 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝑚 ∈ dom 𝐿) |
35 | 27, 34 | eqelssd 3166 | 1 ⊢ (𝜑 → dom 𝐿 = ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 DECID wdc 829 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 ∀wral 2448 ∃wrex 2449 ∪ cun 3119 ∅c0 3414 ifcif 3526 {csn 3583 〈cop 3586 ∪ ciun 3873 ↦ cmpt 4050 suc csuc 4350 ωcom 4574 ◡ccnv 4610 dom cdm 4611 “ cima 4614 –onto→wfo 5196 ‘cfv 5198 (class class class)co 5853 ∈ cmpo 5855 freccfrec 6369 ↑pm cpm 6627 0cc0 7774 1c1 7775 + caddc 7777 − cmin 8090 ℕ0cn0 9135 ℤcz 9212 seqcseq 10401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pm 6629 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-seqfrec 10402 |
This theorem is referenced by: ennnfonelemen 12376 |
Copyright terms: Public domain | W3C validator |