ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemdm GIF version

Theorem ennnfonelemdm 12906
Description: Lemma for ennnfone 12911. The function 𝐿 is defined everywhere. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfone.l 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
Assertion
Ref Expression
ennnfonelemdm (𝜑 → dom 𝐿 = ω)
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑗,𝐹,𝑘,𝑛   𝑥,𝐹,𝑦,𝑘   𝑗,𝐺   𝑖,𝐻,𝑗,𝑘,𝑛   𝑥,𝐻,𝑦,𝑖   𝑗,𝐽   𝑖,𝐿,𝑗,𝑥,𝑦   𝑗,𝑁,𝑘,𝑛   𝑥,𝑁,𝑦   𝜑,𝑖,𝑗,𝑘,𝑛   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑖,𝑘,𝑛)   𝐹(𝑖)   𝐺(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑖,𝑘,𝑛)   𝐿(𝑘,𝑛)   𝑁(𝑖)

Proof of Theorem ennnfonelemdm
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 ennnfone.l . . . . . . . . . . 11 𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)
21dmeqi 4898 . . . . . . . . . 10 dom 𝐿 = dom 𝑖 ∈ ℕ0 (𝐻𝑖)
3 dmiun 4906 . . . . . . . . . 10 dom 𝑖 ∈ ℕ0 (𝐻𝑖) = 𝑖 ∈ ℕ0 dom (𝐻𝑖)
42, 3eqtri 2228 . . . . . . . . 9 dom 𝐿 = 𝑖 ∈ ℕ0 dom (𝐻𝑖)
54eleq2i 2274 . . . . . . . 8 (𝑚 ∈ dom 𝐿𝑚 𝑖 ∈ ℕ0 dom (𝐻𝑖))
65biimpi 120 . . . . . . 7 (𝑚 ∈ dom 𝐿𝑚 𝑖 ∈ ℕ0 dom (𝐻𝑖))
76adantl 277 . . . . . 6 ((𝜑𝑚 ∈ dom 𝐿) → 𝑚 𝑖 ∈ ℕ0 dom (𝐻𝑖))
8 eliun 3945 . . . . . 6 (𝑚 𝑖 ∈ ℕ0 dom (𝐻𝑖) ↔ ∃𝑖 ∈ ℕ0 𝑚 ∈ dom (𝐻𝑖))
97, 8sylib 122 . . . . 5 ((𝜑𝑚 ∈ dom 𝐿) → ∃𝑖 ∈ ℕ0 𝑚 ∈ dom (𝐻𝑖))
10 simprr 531 . . . . . 6 (((𝜑𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0𝑚 ∈ dom (𝐻𝑖))) → 𝑚 ∈ dom (𝐻𝑖))
11 ennnfonelemh.dceq . . . . . . . 8 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
1211ad2antrr 488 . . . . . . 7 (((𝜑𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0𝑚 ∈ dom (𝐻𝑖))) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
13 ennnfonelemh.f . . . . . . . 8 (𝜑𝐹:ω–onto𝐴)
1413ad2antrr 488 . . . . . . 7 (((𝜑𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0𝑚 ∈ dom (𝐻𝑖))) → 𝐹:ω–onto𝐴)
15 ennnfonelemh.ne . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
1615ad2antrr 488 . . . . . . 7 (((𝜑𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0𝑚 ∈ dom (𝐻𝑖))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
17 ennnfonelemh.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
18 ennnfonelemh.n . . . . . . 7 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
19 ennnfonelemh.j . . . . . . 7 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
20 ennnfonelemh.h . . . . . . 7 𝐻 = seq0(𝐺, 𝐽)
21 simprl 529 . . . . . . 7 (((𝜑𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0𝑚 ∈ dom (𝐻𝑖))) → 𝑖 ∈ ℕ0)
2212, 14, 16, 17, 18, 19, 20, 21ennnfonelemom 12894 . . . . . 6 (((𝜑𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0𝑚 ∈ dom (𝐻𝑖))) → dom (𝐻𝑖) ∈ ω)
23 elnn 4672 . . . . . 6 ((𝑚 ∈ dom (𝐻𝑖) ∧ dom (𝐻𝑖) ∈ ω) → 𝑚 ∈ ω)
2410, 22, 23syl2anc 411 . . . . 5 (((𝜑𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0𝑚 ∈ dom (𝐻𝑖))) → 𝑚 ∈ ω)
259, 24rexlimddv 2630 . . . 4 ((𝜑𝑚 ∈ dom 𝐿) → 𝑚 ∈ ω)
2625ex 115 . . 3 (𝜑 → (𝑚 ∈ dom 𝐿𝑚 ∈ ω))
2726ssrdv 3207 . 2 (𝜑 → dom 𝐿 ⊆ ω)
2811adantr 276 . . . . 5 ((𝜑𝑚 ∈ ω) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2913adantr 276 . . . . 5 ((𝜑𝑚 ∈ ω) → 𝐹:ω–onto𝐴)
3015adantr 276 . . . . 5 ((𝜑𝑚 ∈ ω) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
31 simpr 110 . . . . 5 ((𝜑𝑚 ∈ ω) → 𝑚 ∈ ω)
3228, 29, 30, 17, 18, 19, 20, 31ennnfonelemhom 12901 . . . 4 ((𝜑𝑚 ∈ ω) → ∃𝑖 ∈ ℕ0 𝑚 ∈ dom (𝐻𝑖))
3332, 8sylibr 134 . . 3 ((𝜑𝑚 ∈ ω) → 𝑚 𝑖 ∈ ℕ0 dom (𝐻𝑖))
3433, 4eleqtrrdi 2301 . 2 ((𝜑𝑚 ∈ ω) → 𝑚 ∈ dom 𝐿)
3527, 34eqelssd 3220 1 (𝜑 → dom 𝐿 = ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836   = wceq 1373  wcel 2178  wne 2378  wral 2486  wrex 2487  cun 3172  c0 3468  ifcif 3579  {csn 3643  cop 3646   ciun 3941  cmpt 4121  suc csuc 4430  ωcom 4656  ccnv 4692  dom cdm 4693  cima 4696  ontowfo 5288  cfv 5290  (class class class)co 5967  cmpo 5969  freccfrec 6499  pm cpm 6759  0cc0 7960  1c1 7961   + caddc 7963  cmin 8278  0cn0 9330  cz 9407  seqcseq 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pm 6761  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630
This theorem is referenced by:  ennnfonelemen  12907
  Copyright terms: Public domain W3C validator