| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemdm | GIF version | ||
| Description: Lemma for ennnfone 12996. The function 𝐿 is defined everywhere. (Contributed by Jim Kingdon, 16-Jul-2023.) |
| Ref | Expression |
|---|---|
| ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
| ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
| ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
| ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
| ennnfone.l | ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) |
| Ref | Expression |
|---|---|
| ennnfonelemdm | ⊢ (𝜑 → dom 𝐿 = ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ennnfone.l | . . . . . . . . . . 11 ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) | |
| 2 | 1 | dmeqi 4924 | . . . . . . . . . 10 ⊢ dom 𝐿 = dom ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) |
| 3 | dmiun 4932 | . . . . . . . . . 10 ⊢ dom ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) = ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖) | |
| 4 | 2, 3 | eqtri 2250 | . . . . . . . . 9 ⊢ dom 𝐿 = ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖) |
| 5 | 4 | eleq2i 2296 | . . . . . . . 8 ⊢ (𝑚 ∈ dom 𝐿 ↔ 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
| 6 | 5 | biimpi 120 | . . . . . . 7 ⊢ (𝑚 ∈ dom 𝐿 → 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
| 7 | 6 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ dom 𝐿) → 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
| 8 | eliun 3969 | . . . . . 6 ⊢ (𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖) ↔ ∃𝑖 ∈ ℕ0 𝑚 ∈ dom (𝐻‘𝑖)) | |
| 9 | 7, 8 | sylib 122 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ dom 𝐿) → ∃𝑖 ∈ ℕ0 𝑚 ∈ dom (𝐻‘𝑖)) |
| 10 | simprr 531 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝑚 ∈ dom (𝐻‘𝑖)) | |
| 11 | ennnfonelemh.dceq | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
| 12 | 11 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 13 | ennnfonelemh.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
| 14 | 13 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝐹:ω–onto→𝐴) |
| 15 | ennnfonelemh.ne | . . . . . . . 8 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
| 16 | 15 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| 17 | ennnfonelemh.g | . . . . . . 7 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | |
| 18 | ennnfonelemh.n | . . . . . . 7 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 19 | ennnfonelemh.j | . . . . . . 7 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
| 20 | ennnfonelemh.h | . . . . . . 7 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
| 21 | simprl 529 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝑖 ∈ ℕ0) | |
| 22 | 12, 14, 16, 17, 18, 19, 20, 21 | ennnfonelemom 12979 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → dom (𝐻‘𝑖) ∈ ω) |
| 23 | elnn 4698 | . . . . . 6 ⊢ ((𝑚 ∈ dom (𝐻‘𝑖) ∧ dom (𝐻‘𝑖) ∈ ω) → 𝑚 ∈ ω) | |
| 24 | 10, 22, 23 | syl2anc 411 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝑚 ∈ ω) |
| 25 | 9, 24 | rexlimddv 2653 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ dom 𝐿) → 𝑚 ∈ ω) |
| 26 | 25 | ex 115 | . . 3 ⊢ (𝜑 → (𝑚 ∈ dom 𝐿 → 𝑚 ∈ ω)) |
| 27 | 26 | ssrdv 3230 | . 2 ⊢ (𝜑 → dom 𝐿 ⊆ ω) |
| 28 | 11 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 29 | 13 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝐹:ω–onto→𝐴) |
| 30 | 15 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| 31 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝑚 ∈ ω) | |
| 32 | 28, 29, 30, 17, 18, 19, 20, 31 | ennnfonelemhom 12986 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ∃𝑖 ∈ ℕ0 𝑚 ∈ dom (𝐻‘𝑖)) |
| 33 | 32, 8 | sylibr 134 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
| 34 | 33, 4 | eleqtrrdi 2323 | . 2 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝑚 ∈ dom 𝐿) |
| 35 | 27, 34 | eqelssd 3243 | 1 ⊢ (𝜑 → dom 𝐿 = ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∀wral 2508 ∃wrex 2509 ∪ cun 3195 ∅c0 3491 ifcif 3602 {csn 3666 〈cop 3669 ∪ ciun 3965 ↦ cmpt 4145 suc csuc 4456 ωcom 4682 ◡ccnv 4718 dom cdm 4719 “ cima 4722 –onto→wfo 5316 ‘cfv 5318 (class class class)co 6001 ∈ cmpo 6003 freccfrec 6536 ↑pm cpm 6796 0cc0 7999 1c1 8000 + caddc 8002 − cmin 8317 ℕ0cn0 9369 ℤcz 9446 seqcseq 10669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pm 6798 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-seqfrec 10670 |
| This theorem is referenced by: ennnfonelemen 12992 |
| Copyright terms: Public domain | W3C validator |