| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemdm | GIF version | ||
| Description: Lemma for ennnfone 12642. The function 𝐿 is defined everywhere. (Contributed by Jim Kingdon, 16-Jul-2023.) |
| Ref | Expression |
|---|---|
| ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
| ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
| ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
| ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
| ennnfone.l | ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) |
| Ref | Expression |
|---|---|
| ennnfonelemdm | ⊢ (𝜑 → dom 𝐿 = ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ennnfone.l | . . . . . . . . . . 11 ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) | |
| 2 | 1 | dmeqi 4867 | . . . . . . . . . 10 ⊢ dom 𝐿 = dom ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) |
| 3 | dmiun 4875 | . . . . . . . . . 10 ⊢ dom ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) = ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖) | |
| 4 | 2, 3 | eqtri 2217 | . . . . . . . . 9 ⊢ dom 𝐿 = ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖) |
| 5 | 4 | eleq2i 2263 | . . . . . . . 8 ⊢ (𝑚 ∈ dom 𝐿 ↔ 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
| 6 | 5 | biimpi 120 | . . . . . . 7 ⊢ (𝑚 ∈ dom 𝐿 → 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
| 7 | 6 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ dom 𝐿) → 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
| 8 | eliun 3920 | . . . . . 6 ⊢ (𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖) ↔ ∃𝑖 ∈ ℕ0 𝑚 ∈ dom (𝐻‘𝑖)) | |
| 9 | 7, 8 | sylib 122 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ dom 𝐿) → ∃𝑖 ∈ ℕ0 𝑚 ∈ dom (𝐻‘𝑖)) |
| 10 | simprr 531 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝑚 ∈ dom (𝐻‘𝑖)) | |
| 11 | ennnfonelemh.dceq | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
| 12 | 11 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 13 | ennnfonelemh.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
| 14 | 13 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝐹:ω–onto→𝐴) |
| 15 | ennnfonelemh.ne | . . . . . . . 8 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
| 16 | 15 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| 17 | ennnfonelemh.g | . . . . . . 7 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | |
| 18 | ennnfonelemh.n | . . . . . . 7 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 19 | ennnfonelemh.j | . . . . . . 7 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
| 20 | ennnfonelemh.h | . . . . . . 7 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
| 21 | simprl 529 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝑖 ∈ ℕ0) | |
| 22 | 12, 14, 16, 17, 18, 19, 20, 21 | ennnfonelemom 12625 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → dom (𝐻‘𝑖) ∈ ω) |
| 23 | elnn 4642 | . . . . . 6 ⊢ ((𝑚 ∈ dom (𝐻‘𝑖) ∧ dom (𝐻‘𝑖) ∈ ω) → 𝑚 ∈ ω) | |
| 24 | 10, 22, 23 | syl2anc 411 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ dom 𝐿) ∧ (𝑖 ∈ ℕ0 ∧ 𝑚 ∈ dom (𝐻‘𝑖))) → 𝑚 ∈ ω) |
| 25 | 9, 24 | rexlimddv 2619 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ dom 𝐿) → 𝑚 ∈ ω) |
| 26 | 25 | ex 115 | . . 3 ⊢ (𝜑 → (𝑚 ∈ dom 𝐿 → 𝑚 ∈ ω)) |
| 27 | 26 | ssrdv 3189 | . 2 ⊢ (𝜑 → dom 𝐿 ⊆ ω) |
| 28 | 11 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 29 | 13 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝐹:ω–onto→𝐴) |
| 30 | 15 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| 31 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝑚 ∈ ω) | |
| 32 | 28, 29, 30, 17, 18, 19, 20, 31 | ennnfonelemhom 12632 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ∃𝑖 ∈ ℕ0 𝑚 ∈ dom (𝐻‘𝑖)) |
| 33 | 32, 8 | sylibr 134 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝑚 ∈ ∪ 𝑖 ∈ ℕ0 dom (𝐻‘𝑖)) |
| 34 | 33, 4 | eleqtrrdi 2290 | . 2 ⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝑚 ∈ dom 𝐿) |
| 35 | 27, 34 | eqelssd 3202 | 1 ⊢ (𝜑 → dom 𝐿 = ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∀wral 2475 ∃wrex 2476 ∪ cun 3155 ∅c0 3450 ifcif 3561 {csn 3622 〈cop 3625 ∪ ciun 3916 ↦ cmpt 4094 suc csuc 4400 ωcom 4626 ◡ccnv 4662 dom cdm 4663 “ cima 4666 –onto→wfo 5256 ‘cfv 5258 (class class class)co 5922 ∈ cmpo 5924 freccfrec 6448 ↑pm cpm 6708 0cc0 7879 1c1 7880 + caddc 7882 − cmin 8197 ℕ0cn0 9249 ℤcz 9326 seqcseq 10539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pm 6710 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-seqfrec 10540 |
| This theorem is referenced by: ennnfonelemen 12638 |
| Copyright terms: Public domain | W3C validator |