Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fneu2 | GIF version |
Description: There is exactly one value of a function. (Contributed by NM, 7-Nov-1995.) |
Ref | Expression |
---|---|
fneu2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦〈𝐵, 𝑦〉 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneu 5291 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦 𝐵𝐹𝑦) | |
2 | df-br 3982 | . . 3 ⊢ (𝐵𝐹𝑦 ↔ 〈𝐵, 𝑦〉 ∈ 𝐹) | |
3 | 2 | eubii 2023 | . 2 ⊢ (∃!𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦〈𝐵, 𝑦〉 ∈ 𝐹) |
4 | 1, 3 | sylib 121 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦〈𝐵, 𝑦〉 ∈ 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃!weu 2014 ∈ wcel 2136 〈cop 3578 class class class wbr 3981 Fn wfn 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-fun 5189 df-fn 5190 |
This theorem is referenced by: feu 5369 |
Copyright terms: Public domain | W3C validator |