ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeu2 GIF version

Theorem funeu2 5213
Description: There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
funeu2 ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐹) → ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem funeu2
StepHypRef Expression
1 df-br 3982 . 2 (𝐴𝐹𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹)
2 funeu 5212 . . 3 ((Fun 𝐹𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
3 df-br 3982 . . . 4 (𝐴𝐹𝑦 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹)
43eubii 2023 . . 3 (∃!𝑦 𝐴𝐹𝑦 ↔ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
52, 4sylib 121 . 2 ((Fun 𝐹𝐴𝐹𝐵) → ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
61, 5sylan2br 286 1 ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐹) → ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  ∃!weu 2014  wcel 2136  cop 3578   class class class wbr 3981  Fun wfun 5181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-fun 5189
This theorem is referenced by:  funssres  5229
  Copyright terms: Public domain W3C validator