![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funeu2 | GIF version |
Description: There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
funeu2 | ⊢ ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐹) → ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4006 | . 2 ⊢ (𝐴𝐹𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹) | |
2 | funeu 5243 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) | |
3 | df-br 4006 | . . . 4 ⊢ (𝐴𝐹𝑦 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹) | |
4 | 3 | eubii 2035 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 ↔ ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹) |
5 | 2, 4 | sylib 122 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹) |
6 | 1, 5 | sylan2br 288 | 1 ⊢ ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐹) → ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃!weu 2026 ∈ wcel 2148 ⟨cop 3597 class class class wbr 4005 Fun wfun 5212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-fun 5220 |
This theorem is referenced by: funssres 5260 |
Copyright terms: Public domain | W3C validator |