ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalgb GIF version

Theorem divalgb 12107
Description: Express the division algorithm as stated in divalg 12106 in terms of . (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
divalgb ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalgb
StepHypRef Expression
1 df-3an 982 . . . . . . . . 9 ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
21rexbii 2504 . . . . . . . 8 (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃𝑞 ∈ ℤ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
3 r19.42v 2654 . . . . . . . 8 (∃𝑞 ∈ ℤ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
42, 3bitri 184 . . . . . . 7 (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
5 zsubcl 9384 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝑁𝑟) ∈ ℤ)
6 divides 11971 . . . . . . . . . . . 12 ((𝐷 ∈ ℤ ∧ (𝑁𝑟) ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
75, 6sylan2 286 . . . . . . . . . . 11 ((𝐷 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ)) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
873impb 1201 . . . . . . . . . 10 ((𝐷 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
983com12 1209 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟)))
10 zcn 9348 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
11 zcn 9348 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℤ → 𝑟 ∈ ℂ)
12 zmulcl 9396 . . . . . . . . . . . . . . . . . . 19 ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 · 𝐷) ∈ ℤ)
1312zcnd 9466 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 · 𝐷) ∈ ℂ)
14 subadd 8246 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℂ ∧ 𝑟 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → ((𝑁𝑟) = (𝑞 · 𝐷) ↔ (𝑟 + (𝑞 · 𝐷)) = 𝑁))
1510, 11, 13, 14syl3an 1291 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑁𝑟) = (𝑞 · 𝐷) ↔ (𝑟 + (𝑞 · 𝐷)) = 𝑁))
16 addcom 8180 . . . . . . . . . . . . . . . . . . . 20 ((𝑟 ∈ ℂ ∧ (𝑞 · 𝐷) ∈ ℂ) → (𝑟 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑟))
1711, 13, 16syl2an 289 . . . . . . . . . . . . . . . . . . 19 ((𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝑟 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑟))
18173adant1 1017 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝑟 + (𝑞 · 𝐷)) = ((𝑞 · 𝐷) + 𝑟))
1918eqeq1d 2205 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑟 + (𝑞 · 𝐷)) = 𝑁 ↔ ((𝑞 · 𝐷) + 𝑟) = 𝑁))
2015, 19bitrd 188 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑁𝑟) = (𝑞 · 𝐷) ↔ ((𝑞 · 𝐷) + 𝑟) = 𝑁))
21 eqcom 2198 . . . . . . . . . . . . . . . 16 ((𝑁𝑟) = (𝑞 · 𝐷) ↔ (𝑞 · 𝐷) = (𝑁𝑟))
22 eqcom 2198 . . . . . . . . . . . . . . . 16 (((𝑞 · 𝐷) + 𝑟) = 𝑁𝑁 = ((𝑞 · 𝐷) + 𝑟))
2320, 21, 223bitr3g 222 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
24233expia 1207 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → ((𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
2524expcomd 1452 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∈ ℤ → (𝑞 ∈ ℤ → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))))
26253impia 1202 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑞 ∈ ℤ → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
2726imp 124 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ 𝑞 ∈ ℤ) → ((𝑞 · 𝐷) = (𝑁𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
2827rexbidva 2494 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
29283com23 1211 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (𝑞 · 𝐷) = (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
309, 29bitrd 188 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐷 ∥ (𝑁𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
3130anbi2d 464 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝐷 ∥ (𝑁𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
324, 31bitr4id 199 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝐷 ∥ (𝑁𝑟))))
33 anass 401 . . . . . 6 (((0 ≤ 𝑟𝑟 < (abs‘𝐷)) ∧ 𝐷 ∥ (𝑁𝑟)) ↔ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
3432, 33bitrdi 196 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
35343expa 1205 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
3635reubidva 2680 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℤ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
37 elnn0z 9356 . . . . . . 7 (𝑟 ∈ ℕ0 ↔ (𝑟 ∈ ℤ ∧ 0 ≤ 𝑟))
3837anbi1i 458 . . . . . 6 ((𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ((𝑟 ∈ ℤ ∧ 0 ≤ 𝑟) ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
39 anass 401 . . . . . 6 (((𝑟 ∈ ℤ ∧ 0 ≤ 𝑟) ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ (𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
4038, 39bitri 184 . . . . 5 ((𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ (𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
4140eubii 2054 . . . 4 (∃!𝑟(𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ∃!𝑟(𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
42 df-reu 2482 . . . 4 (∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)) ↔ ∃!𝑟(𝑟 ∈ ℕ0 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
43 df-reu 2482 . . . 4 (∃!𝑟 ∈ ℤ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ∃!𝑟(𝑟 ∈ ℤ ∧ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))))
4441, 42, 433bitr4ri 213 . . 3 (∃!𝑟 ∈ ℤ (0 ≤ 𝑟 ∧ (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟)))
4536, 44bitrdi 196 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
46453adant3 1019 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  ∃!weu 2045  wcel 2167  wne 2367  wrex 2476  ∃!wreu 2477   class class class wbr 4034  cfv 5259  (class class class)co 5925  cc 7894  0cc0 7896   + caddc 7899   · cmul 7901   < clt 8078  cle 8079  cmin 8214  0cn0 9266  cz 9343  abscabs 11179  cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-dvds 11970
This theorem is referenced by:  divalg2  12108
  Copyright terms: Public domain W3C validator