Proof of Theorem recexprlemm
| Step | Hyp | Ref
| Expression |
| 1 | | prop 7542 |
. . 3
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
| 2 | | prmu 7545 |
. . 3
⊢
(〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P →
∃𝑥 ∈
Q 𝑥 ∈
(2nd ‘𝐴)) |
| 3 | | recclnq 7459 |
. . . . . . 7
⊢ (𝑥 ∈ Q →
(*Q‘𝑥) ∈ Q) |
| 4 | | nsmallnqq 7479 |
. . . . . . 7
⊢
((*Q‘𝑥) ∈ Q → ∃𝑞 ∈ Q 𝑞 <Q
(*Q‘𝑥)) |
| 5 | 3, 4 | syl 14 |
. . . . . 6
⊢ (𝑥 ∈ Q →
∃𝑞 ∈
Q 𝑞
<Q (*Q‘𝑥)) |
| 6 | 5 | adantr 276 |
. . . . 5
⊢ ((𝑥 ∈ Q ∧
𝑥 ∈ (2nd
‘𝐴)) →
∃𝑞 ∈
Q 𝑞
<Q (*Q‘𝑥)) |
| 7 | | recrecnq 7461 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ Q →
(*Q‘(*Q‘𝑥)) = 𝑥) |
| 8 | 7 | eleq1d 2265 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ Q →
((*Q‘(*Q‘𝑥)) ∈ (2nd
‘𝐴) ↔ 𝑥 ∈ (2nd
‘𝐴))) |
| 9 | 8 | anbi2d 464 |
. . . . . . . . . 10
⊢ (𝑥 ∈ Q →
((𝑞
<Q (*Q‘𝑥) ∧
(*Q‘(*Q‘𝑥)) ∈ (2nd
‘𝐴)) ↔ (𝑞 <Q
(*Q‘𝑥) ∧ 𝑥 ∈ (2nd ‘𝐴)))) |
| 10 | | breq2 4037 |
. . . . . . . . . . . . 13
⊢ (𝑦 =
(*Q‘𝑥) → (𝑞 <Q 𝑦 ↔ 𝑞 <Q
(*Q‘𝑥))) |
| 11 | | fveq2 5558 |
. . . . . . . . . . . . . 14
⊢ (𝑦 =
(*Q‘𝑥) →
(*Q‘𝑦) =
(*Q‘(*Q‘𝑥))) |
| 12 | 11 | eleq1d 2265 |
. . . . . . . . . . . . 13
⊢ (𝑦 =
(*Q‘𝑥) →
((*Q‘𝑦) ∈ (2nd ‘𝐴) ↔
(*Q‘(*Q‘𝑥)) ∈ (2nd
‘𝐴))) |
| 13 | 10, 12 | anbi12d 473 |
. . . . . . . . . . . 12
⊢ (𝑦 =
(*Q‘𝑥) → ((𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ↔ (𝑞 <Q
(*Q‘𝑥) ∧
(*Q‘(*Q‘𝑥)) ∈ (2nd
‘𝐴)))) |
| 14 | 13 | spcegv 2852 |
. . . . . . . . . . 11
⊢
((*Q‘𝑥) ∈ Q → ((𝑞 <Q
(*Q‘𝑥) ∧
(*Q‘(*Q‘𝑥)) ∈ (2nd
‘𝐴)) →
∃𝑦(𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
| 15 | 3, 14 | syl 14 |
. . . . . . . . . 10
⊢ (𝑥 ∈ Q →
((𝑞
<Q (*Q‘𝑥) ∧
(*Q‘(*Q‘𝑥)) ∈ (2nd
‘𝐴)) →
∃𝑦(𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
| 16 | 9, 15 | sylbird 170 |
. . . . . . . . 9
⊢ (𝑥 ∈ Q →
((𝑞
<Q (*Q‘𝑥) ∧ 𝑥 ∈ (2nd ‘𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
| 17 | | recexpr.1 |
. . . . . . . . . 10
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 |
| 18 | 17 | recexprlemell 7689 |
. . . . . . . . 9
⊢ (𝑞 ∈ (1st
‘𝐵) ↔
∃𝑦(𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))) |
| 19 | 16, 18 | imbitrrdi 162 |
. . . . . . . 8
⊢ (𝑥 ∈ Q →
((𝑞
<Q (*Q‘𝑥) ∧ 𝑥 ∈ (2nd ‘𝐴)) → 𝑞 ∈ (1st ‘𝐵))) |
| 20 | 19 | expcomd 1452 |
. . . . . . 7
⊢ (𝑥 ∈ Q →
(𝑥 ∈ (2nd
‘𝐴) → (𝑞 <Q
(*Q‘𝑥) → 𝑞 ∈ (1st ‘𝐵)))) |
| 21 | 20 | imp 124 |
. . . . . 6
⊢ ((𝑥 ∈ Q ∧
𝑥 ∈ (2nd
‘𝐴)) → (𝑞 <Q
(*Q‘𝑥) → 𝑞 ∈ (1st ‘𝐵))) |
| 22 | 21 | reximdv 2598 |
. . . . 5
⊢ ((𝑥 ∈ Q ∧
𝑥 ∈ (2nd
‘𝐴)) →
(∃𝑞 ∈
Q 𝑞
<Q (*Q‘𝑥) → ∃𝑞 ∈ Q 𝑞 ∈ (1st
‘𝐵))) |
| 23 | 6, 22 | mpd 13 |
. . . 4
⊢ ((𝑥 ∈ Q ∧
𝑥 ∈ (2nd
‘𝐴)) →
∃𝑞 ∈
Q 𝑞 ∈
(1st ‘𝐵)) |
| 24 | 23 | rexlimiva 2609 |
. . 3
⊢
(∃𝑥 ∈
Q 𝑥 ∈
(2nd ‘𝐴)
→ ∃𝑞 ∈
Q 𝑞 ∈
(1st ‘𝐵)) |
| 25 | 1, 2, 24 | 3syl 17 |
. 2
⊢ (𝐴 ∈ P →
∃𝑞 ∈
Q 𝑞 ∈
(1st ‘𝐵)) |
| 26 | | prml 7544 |
. . 3
⊢
(〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P →
∃𝑥 ∈
Q 𝑥 ∈
(1st ‘𝐴)) |
| 27 | | 1nq 7433 |
. . . . . . . 8
⊢
1Q ∈ Q |
| 28 | | addclnq 7442 |
. . . . . . . 8
⊢
(((*Q‘𝑥) ∈ Q ∧
1Q ∈ Q) →
((*Q‘𝑥) +Q
1Q) ∈ Q) |
| 29 | 3, 27, 28 | sylancl 413 |
. . . . . . 7
⊢ (𝑥 ∈ Q →
((*Q‘𝑥) +Q
1Q) ∈ Q) |
| 30 | | ltaddnq 7474 |
. . . . . . . 8
⊢
(((*Q‘𝑥) ∈ Q ∧
1Q ∈ Q) →
(*Q‘𝑥) <Q
((*Q‘𝑥) +Q
1Q)) |
| 31 | 3, 27, 30 | sylancl 413 |
. . . . . . 7
⊢ (𝑥 ∈ Q →
(*Q‘𝑥) <Q
((*Q‘𝑥) +Q
1Q)) |
| 32 | | breq2 4037 |
. . . . . . . 8
⊢ (𝑟 =
((*Q‘𝑥) +Q
1Q) → ((*Q‘𝑥) <Q
𝑟 ↔
(*Q‘𝑥) <Q
((*Q‘𝑥) +Q
1Q))) |
| 33 | 32 | rspcev 2868 |
. . . . . . 7
⊢
((((*Q‘𝑥) +Q
1Q) ∈ Q ∧
(*Q‘𝑥) <Q
((*Q‘𝑥) +Q
1Q)) → ∃𝑟 ∈ Q
(*Q‘𝑥) <Q 𝑟) |
| 34 | 29, 31, 33 | syl2anc 411 |
. . . . . 6
⊢ (𝑥 ∈ Q →
∃𝑟 ∈
Q (*Q‘𝑥) <Q 𝑟) |
| 35 | 34 | adantr 276 |
. . . . 5
⊢ ((𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴)) →
∃𝑟 ∈
Q (*Q‘𝑥) <Q 𝑟) |
| 36 | 7 | eleq1d 2265 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ Q →
((*Q‘(*Q‘𝑥)) ∈ (1st
‘𝐴) ↔ 𝑥 ∈ (1st
‘𝐴))) |
| 37 | 36 | anbi2d 464 |
. . . . . . . . . 10
⊢ (𝑥 ∈ Q →
(((*Q‘𝑥) <Q 𝑟 ∧
(*Q‘(*Q‘𝑥)) ∈ (1st
‘𝐴)) ↔
((*Q‘𝑥) <Q 𝑟 ∧ 𝑥 ∈ (1st ‘𝐴)))) |
| 38 | | breq1 4036 |
. . . . . . . . . . . . 13
⊢ (𝑦 =
(*Q‘𝑥) → (𝑦 <Q 𝑟 ↔
(*Q‘𝑥) <Q 𝑟)) |
| 39 | 11 | eleq1d 2265 |
. . . . . . . . . . . . 13
⊢ (𝑦 =
(*Q‘𝑥) →
((*Q‘𝑦) ∈ (1st ‘𝐴) ↔
(*Q‘(*Q‘𝑥)) ∈ (1st
‘𝐴))) |
| 40 | 38, 39 | anbi12d 473 |
. . . . . . . . . . . 12
⊢ (𝑦 =
(*Q‘𝑥) → ((𝑦 <Q 𝑟 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)) ↔
((*Q‘𝑥) <Q 𝑟 ∧
(*Q‘(*Q‘𝑥)) ∈ (1st
‘𝐴)))) |
| 41 | 40 | spcegv 2852 |
. . . . . . . . . . 11
⊢
((*Q‘𝑥) ∈ Q →
(((*Q‘𝑥) <Q 𝑟 ∧
(*Q‘(*Q‘𝑥)) ∈ (1st
‘𝐴)) →
∃𝑦(𝑦 <Q 𝑟 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)))) |
| 42 | 3, 41 | syl 14 |
. . . . . . . . . 10
⊢ (𝑥 ∈ Q →
(((*Q‘𝑥) <Q 𝑟 ∧
(*Q‘(*Q‘𝑥)) ∈ (1st
‘𝐴)) →
∃𝑦(𝑦 <Q 𝑟 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)))) |
| 43 | 37, 42 | sylbird 170 |
. . . . . . . . 9
⊢ (𝑥 ∈ Q →
(((*Q‘𝑥) <Q 𝑟 ∧ 𝑥 ∈ (1st ‘𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)))) |
| 44 | 17 | recexprlemelu 7690 |
. . . . . . . . 9
⊢ (𝑟 ∈ (2nd
‘𝐵) ↔
∃𝑦(𝑦 <Q 𝑟 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))) |
| 45 | 43, 44 | imbitrrdi 162 |
. . . . . . . 8
⊢ (𝑥 ∈ Q →
(((*Q‘𝑥) <Q 𝑟 ∧ 𝑥 ∈ (1st ‘𝐴)) → 𝑟 ∈ (2nd ‘𝐵))) |
| 46 | 45 | expcomd 1452 |
. . . . . . 7
⊢ (𝑥 ∈ Q →
(𝑥 ∈ (1st
‘𝐴) →
((*Q‘𝑥) <Q 𝑟 → 𝑟 ∈ (2nd ‘𝐵)))) |
| 47 | 46 | imp 124 |
. . . . . 6
⊢ ((𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴)) →
((*Q‘𝑥) <Q 𝑟 → 𝑟 ∈ (2nd ‘𝐵))) |
| 48 | 47 | reximdv 2598 |
. . . . 5
⊢ ((𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴)) →
(∃𝑟 ∈
Q (*Q‘𝑥) <Q 𝑟 → ∃𝑟 ∈ Q 𝑟 ∈ (2nd
‘𝐵))) |
| 49 | 35, 48 | mpd 13 |
. . . 4
⊢ ((𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴)) →
∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐵)) |
| 50 | 49 | rexlimiva 2609 |
. . 3
⊢
(∃𝑥 ∈
Q 𝑥 ∈
(1st ‘𝐴)
→ ∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐵)) |
| 51 | 1, 26, 50 | 3syl 17 |
. 2
⊢ (𝐴 ∈ P →
∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐵)) |
| 52 | 25, 51 | jca 306 |
1
⊢ (𝐴 ∈ P →
(∃𝑞 ∈
Q 𝑞 ∈
(1st ‘𝐵)
∧ ∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐵))) |