ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemm GIF version

Theorem recexprlemm 7586
Description: 𝐵 is inhabited. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemm (𝐴P → (∃𝑞Q 𝑞 ∈ (1st𝐵) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
Distinct variable groups:   𝑟,𝑞,𝑥,𝑦,𝐴   𝐵,𝑞,𝑟,𝑥,𝑦

Proof of Theorem recexprlemm
StepHypRef Expression
1 prop 7437 . . 3 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prmu 7440 . . 3 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (2nd𝐴))
3 recclnq 7354 . . . . . . 7 (𝑥Q → (*Q𝑥) ∈ Q)
4 nsmallnqq 7374 . . . . . . 7 ((*Q𝑥) ∈ Q → ∃𝑞Q 𝑞 <Q (*Q𝑥))
53, 4syl 14 . . . . . 6 (𝑥Q → ∃𝑞Q 𝑞 <Q (*Q𝑥))
65adantr 274 . . . . 5 ((𝑥Q𝑥 ∈ (2nd𝐴)) → ∃𝑞Q 𝑞 <Q (*Q𝑥))
7 recrecnq 7356 . . . . . . . . . . . 12 (𝑥Q → (*Q‘(*Q𝑥)) = 𝑥)
87eleq1d 2239 . . . . . . . . . . 11 (𝑥Q → ((*Q‘(*Q𝑥)) ∈ (2nd𝐴) ↔ 𝑥 ∈ (2nd𝐴)))
98anbi2d 461 . . . . . . . . . 10 (𝑥Q → ((𝑞 <Q (*Q𝑥) ∧ (*Q‘(*Q𝑥)) ∈ (2nd𝐴)) ↔ (𝑞 <Q (*Q𝑥) ∧ 𝑥 ∈ (2nd𝐴))))
10 breq2 3993 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑥) → (𝑞 <Q 𝑦𝑞 <Q (*Q𝑥)))
11 fveq2 5496 . . . . . . . . . . . . . 14 (𝑦 = (*Q𝑥) → (*Q𝑦) = (*Q‘(*Q𝑥)))
1211eleq1d 2239 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑥) → ((*Q𝑦) ∈ (2nd𝐴) ↔ (*Q‘(*Q𝑥)) ∈ (2nd𝐴)))
1310, 12anbi12d 470 . . . . . . . . . . . 12 (𝑦 = (*Q𝑥) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ↔ (𝑞 <Q (*Q𝑥) ∧ (*Q‘(*Q𝑥)) ∈ (2nd𝐴))))
1413spcegv 2818 . . . . . . . . . . 11 ((*Q𝑥) ∈ Q → ((𝑞 <Q (*Q𝑥) ∧ (*Q‘(*Q𝑥)) ∈ (2nd𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
153, 14syl 14 . . . . . . . . . 10 (𝑥Q → ((𝑞 <Q (*Q𝑥) ∧ (*Q‘(*Q𝑥)) ∈ (2nd𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
169, 15sylbird 169 . . . . . . . . 9 (𝑥Q → ((𝑞 <Q (*Q𝑥) ∧ 𝑥 ∈ (2nd𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
17 recexpr.1 . . . . . . . . . 10 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
1817recexprlemell 7584 . . . . . . . . 9 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
1916, 18syl6ibr 161 . . . . . . . 8 (𝑥Q → ((𝑞 <Q (*Q𝑥) ∧ 𝑥 ∈ (2nd𝐴)) → 𝑞 ∈ (1st𝐵)))
2019expcomd 1434 . . . . . . 7 (𝑥Q → (𝑥 ∈ (2nd𝐴) → (𝑞 <Q (*Q𝑥) → 𝑞 ∈ (1st𝐵))))
2120imp 123 . . . . . 6 ((𝑥Q𝑥 ∈ (2nd𝐴)) → (𝑞 <Q (*Q𝑥) → 𝑞 ∈ (1st𝐵)))
2221reximdv 2571 . . . . 5 ((𝑥Q𝑥 ∈ (2nd𝐴)) → (∃𝑞Q 𝑞 <Q (*Q𝑥) → ∃𝑞Q 𝑞 ∈ (1st𝐵)))
236, 22mpd 13 . . . 4 ((𝑥Q𝑥 ∈ (2nd𝐴)) → ∃𝑞Q 𝑞 ∈ (1st𝐵))
2423rexlimiva 2582 . . 3 (∃𝑥Q 𝑥 ∈ (2nd𝐴) → ∃𝑞Q 𝑞 ∈ (1st𝐵))
251, 2, 243syl 17 . 2 (𝐴P → ∃𝑞Q 𝑞 ∈ (1st𝐵))
26 prml 7439 . . 3 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (1st𝐴))
27 1nq 7328 . . . . . . . 8 1QQ
28 addclnq 7337 . . . . . . . 8 (((*Q𝑥) ∈ Q ∧ 1QQ) → ((*Q𝑥) +Q 1Q) ∈ Q)
293, 27, 28sylancl 411 . . . . . . 7 (𝑥Q → ((*Q𝑥) +Q 1Q) ∈ Q)
30 ltaddnq 7369 . . . . . . . 8 (((*Q𝑥) ∈ Q ∧ 1QQ) → (*Q𝑥) <Q ((*Q𝑥) +Q 1Q))
313, 27, 30sylancl 411 . . . . . . 7 (𝑥Q → (*Q𝑥) <Q ((*Q𝑥) +Q 1Q))
32 breq2 3993 . . . . . . . 8 (𝑟 = ((*Q𝑥) +Q 1Q) → ((*Q𝑥) <Q 𝑟 ↔ (*Q𝑥) <Q ((*Q𝑥) +Q 1Q)))
3332rspcev 2834 . . . . . . 7 ((((*Q𝑥) +Q 1Q) ∈ Q ∧ (*Q𝑥) <Q ((*Q𝑥) +Q 1Q)) → ∃𝑟Q (*Q𝑥) <Q 𝑟)
3429, 31, 33syl2anc 409 . . . . . 6 (𝑥Q → ∃𝑟Q (*Q𝑥) <Q 𝑟)
3534adantr 274 . . . . 5 ((𝑥Q𝑥 ∈ (1st𝐴)) → ∃𝑟Q (*Q𝑥) <Q 𝑟)
367eleq1d 2239 . . . . . . . . . . 11 (𝑥Q → ((*Q‘(*Q𝑥)) ∈ (1st𝐴) ↔ 𝑥 ∈ (1st𝐴)))
3736anbi2d 461 . . . . . . . . . 10 (𝑥Q → (((*Q𝑥) <Q 𝑟 ∧ (*Q‘(*Q𝑥)) ∈ (1st𝐴)) ↔ ((*Q𝑥) <Q 𝑟𝑥 ∈ (1st𝐴))))
38 breq1 3992 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑥) → (𝑦 <Q 𝑟 ↔ (*Q𝑥) <Q 𝑟))
3911eleq1d 2239 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑥) → ((*Q𝑦) ∈ (1st𝐴) ↔ (*Q‘(*Q𝑥)) ∈ (1st𝐴)))
4038, 39anbi12d 470 . . . . . . . . . . . 12 (𝑦 = (*Q𝑥) → ((𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ ((*Q𝑥) <Q 𝑟 ∧ (*Q‘(*Q𝑥)) ∈ (1st𝐴))))
4140spcegv 2818 . . . . . . . . . . 11 ((*Q𝑥) ∈ Q → (((*Q𝑥) <Q 𝑟 ∧ (*Q‘(*Q𝑥)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
423, 41syl 14 . . . . . . . . . 10 (𝑥Q → (((*Q𝑥) <Q 𝑟 ∧ (*Q‘(*Q𝑥)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
4337, 42sylbird 169 . . . . . . . . 9 (𝑥Q → (((*Q𝑥) <Q 𝑟𝑥 ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
4417recexprlemelu 7585 . . . . . . . . 9 (𝑟 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)))
4543, 44syl6ibr 161 . . . . . . . 8 (𝑥Q → (((*Q𝑥) <Q 𝑟𝑥 ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐵)))
4645expcomd 1434 . . . . . . 7 (𝑥Q → (𝑥 ∈ (1st𝐴) → ((*Q𝑥) <Q 𝑟𝑟 ∈ (2nd𝐵))))
4746imp 123 . . . . . 6 ((𝑥Q𝑥 ∈ (1st𝐴)) → ((*Q𝑥) <Q 𝑟𝑟 ∈ (2nd𝐵)))
4847reximdv 2571 . . . . 5 ((𝑥Q𝑥 ∈ (1st𝐴)) → (∃𝑟Q (*Q𝑥) <Q 𝑟 → ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
4935, 48mpd 13 . . . 4 ((𝑥Q𝑥 ∈ (1st𝐴)) → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
5049rexlimiva 2582 . . 3 (∃𝑥Q 𝑥 ∈ (1st𝐴) → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
511, 26, 503syl 17 . 2 (𝐴P → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
5225, 51jca 304 1 (𝐴P → (∃𝑞Q 𝑞 ∈ (1st𝐵) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wex 1485  wcel 2141  {cab 2156  wrex 2449  cop 3586   class class class wbr 3989  cfv 5198  (class class class)co 5853  1st c1st 6117  2nd c2nd 6118  Qcnq 7242  1Qc1q 7243   +Q cplq 7244  *Qcrq 7246   <Q cltq 7247  Pcnp 7253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-inp 7428
This theorem is referenced by:  recexprlempr  7594
  Copyright terms: Public domain W3C validator