ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemm GIF version

Theorem recexprlemm 7799
Description: 𝐵 is inhabited. Lemma for recexpr 7813. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemm (𝐴P → (∃𝑞Q 𝑞 ∈ (1st𝐵) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
Distinct variable groups:   𝑟,𝑞,𝑥,𝑦,𝐴   𝐵,𝑞,𝑟,𝑥,𝑦

Proof of Theorem recexprlemm
StepHypRef Expression
1 prop 7650 . . 3 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prmu 7653 . . 3 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (2nd𝐴))
3 recclnq 7567 . . . . . . 7 (𝑥Q → (*Q𝑥) ∈ Q)
4 nsmallnqq 7587 . . . . . . 7 ((*Q𝑥) ∈ Q → ∃𝑞Q 𝑞 <Q (*Q𝑥))
53, 4syl 14 . . . . . 6 (𝑥Q → ∃𝑞Q 𝑞 <Q (*Q𝑥))
65adantr 276 . . . . 5 ((𝑥Q𝑥 ∈ (2nd𝐴)) → ∃𝑞Q 𝑞 <Q (*Q𝑥))
7 recrecnq 7569 . . . . . . . . . . . 12 (𝑥Q → (*Q‘(*Q𝑥)) = 𝑥)
87eleq1d 2298 . . . . . . . . . . 11 (𝑥Q → ((*Q‘(*Q𝑥)) ∈ (2nd𝐴) ↔ 𝑥 ∈ (2nd𝐴)))
98anbi2d 464 . . . . . . . . . 10 (𝑥Q → ((𝑞 <Q (*Q𝑥) ∧ (*Q‘(*Q𝑥)) ∈ (2nd𝐴)) ↔ (𝑞 <Q (*Q𝑥) ∧ 𝑥 ∈ (2nd𝐴))))
10 breq2 4086 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑥) → (𝑞 <Q 𝑦𝑞 <Q (*Q𝑥)))
11 fveq2 5623 . . . . . . . . . . . . . 14 (𝑦 = (*Q𝑥) → (*Q𝑦) = (*Q‘(*Q𝑥)))
1211eleq1d 2298 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑥) → ((*Q𝑦) ∈ (2nd𝐴) ↔ (*Q‘(*Q𝑥)) ∈ (2nd𝐴)))
1310, 12anbi12d 473 . . . . . . . . . . . 12 (𝑦 = (*Q𝑥) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ↔ (𝑞 <Q (*Q𝑥) ∧ (*Q‘(*Q𝑥)) ∈ (2nd𝐴))))
1413spcegv 2891 . . . . . . . . . . 11 ((*Q𝑥) ∈ Q → ((𝑞 <Q (*Q𝑥) ∧ (*Q‘(*Q𝑥)) ∈ (2nd𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
153, 14syl 14 . . . . . . . . . 10 (𝑥Q → ((𝑞 <Q (*Q𝑥) ∧ (*Q‘(*Q𝑥)) ∈ (2nd𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
169, 15sylbird 170 . . . . . . . . 9 (𝑥Q → ((𝑞 <Q (*Q𝑥) ∧ 𝑥 ∈ (2nd𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
17 recexpr.1 . . . . . . . . . 10 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
1817recexprlemell 7797 . . . . . . . . 9 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
1916, 18imbitrrdi 162 . . . . . . . 8 (𝑥Q → ((𝑞 <Q (*Q𝑥) ∧ 𝑥 ∈ (2nd𝐴)) → 𝑞 ∈ (1st𝐵)))
2019expcomd 1484 . . . . . . 7 (𝑥Q → (𝑥 ∈ (2nd𝐴) → (𝑞 <Q (*Q𝑥) → 𝑞 ∈ (1st𝐵))))
2120imp 124 . . . . . 6 ((𝑥Q𝑥 ∈ (2nd𝐴)) → (𝑞 <Q (*Q𝑥) → 𝑞 ∈ (1st𝐵)))
2221reximdv 2631 . . . . 5 ((𝑥Q𝑥 ∈ (2nd𝐴)) → (∃𝑞Q 𝑞 <Q (*Q𝑥) → ∃𝑞Q 𝑞 ∈ (1st𝐵)))
236, 22mpd 13 . . . 4 ((𝑥Q𝑥 ∈ (2nd𝐴)) → ∃𝑞Q 𝑞 ∈ (1st𝐵))
2423rexlimiva 2643 . . 3 (∃𝑥Q 𝑥 ∈ (2nd𝐴) → ∃𝑞Q 𝑞 ∈ (1st𝐵))
251, 2, 243syl 17 . 2 (𝐴P → ∃𝑞Q 𝑞 ∈ (1st𝐵))
26 prml 7652 . . 3 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (1st𝐴))
27 1nq 7541 . . . . . . . 8 1QQ
28 addclnq 7550 . . . . . . . 8 (((*Q𝑥) ∈ Q ∧ 1QQ) → ((*Q𝑥) +Q 1Q) ∈ Q)
293, 27, 28sylancl 413 . . . . . . 7 (𝑥Q → ((*Q𝑥) +Q 1Q) ∈ Q)
30 ltaddnq 7582 . . . . . . . 8 (((*Q𝑥) ∈ Q ∧ 1QQ) → (*Q𝑥) <Q ((*Q𝑥) +Q 1Q))
313, 27, 30sylancl 413 . . . . . . 7 (𝑥Q → (*Q𝑥) <Q ((*Q𝑥) +Q 1Q))
32 breq2 4086 . . . . . . . 8 (𝑟 = ((*Q𝑥) +Q 1Q) → ((*Q𝑥) <Q 𝑟 ↔ (*Q𝑥) <Q ((*Q𝑥) +Q 1Q)))
3332rspcev 2907 . . . . . . 7 ((((*Q𝑥) +Q 1Q) ∈ Q ∧ (*Q𝑥) <Q ((*Q𝑥) +Q 1Q)) → ∃𝑟Q (*Q𝑥) <Q 𝑟)
3429, 31, 33syl2anc 411 . . . . . 6 (𝑥Q → ∃𝑟Q (*Q𝑥) <Q 𝑟)
3534adantr 276 . . . . 5 ((𝑥Q𝑥 ∈ (1st𝐴)) → ∃𝑟Q (*Q𝑥) <Q 𝑟)
367eleq1d 2298 . . . . . . . . . . 11 (𝑥Q → ((*Q‘(*Q𝑥)) ∈ (1st𝐴) ↔ 𝑥 ∈ (1st𝐴)))
3736anbi2d 464 . . . . . . . . . 10 (𝑥Q → (((*Q𝑥) <Q 𝑟 ∧ (*Q‘(*Q𝑥)) ∈ (1st𝐴)) ↔ ((*Q𝑥) <Q 𝑟𝑥 ∈ (1st𝐴))))
38 breq1 4085 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑥) → (𝑦 <Q 𝑟 ↔ (*Q𝑥) <Q 𝑟))
3911eleq1d 2298 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑥) → ((*Q𝑦) ∈ (1st𝐴) ↔ (*Q‘(*Q𝑥)) ∈ (1st𝐴)))
4038, 39anbi12d 473 . . . . . . . . . . . 12 (𝑦 = (*Q𝑥) → ((𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ ((*Q𝑥) <Q 𝑟 ∧ (*Q‘(*Q𝑥)) ∈ (1st𝐴))))
4140spcegv 2891 . . . . . . . . . . 11 ((*Q𝑥) ∈ Q → (((*Q𝑥) <Q 𝑟 ∧ (*Q‘(*Q𝑥)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
423, 41syl 14 . . . . . . . . . 10 (𝑥Q → (((*Q𝑥) <Q 𝑟 ∧ (*Q‘(*Q𝑥)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
4337, 42sylbird 170 . . . . . . . . 9 (𝑥Q → (((*Q𝑥) <Q 𝑟𝑥 ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
4417recexprlemelu 7798 . . . . . . . . 9 (𝑟 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)))
4543, 44imbitrrdi 162 . . . . . . . 8 (𝑥Q → (((*Q𝑥) <Q 𝑟𝑥 ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐵)))
4645expcomd 1484 . . . . . . 7 (𝑥Q → (𝑥 ∈ (1st𝐴) → ((*Q𝑥) <Q 𝑟𝑟 ∈ (2nd𝐵))))
4746imp 124 . . . . . 6 ((𝑥Q𝑥 ∈ (1st𝐴)) → ((*Q𝑥) <Q 𝑟𝑟 ∈ (2nd𝐵)))
4847reximdv 2631 . . . . 5 ((𝑥Q𝑥 ∈ (1st𝐴)) → (∃𝑟Q (*Q𝑥) <Q 𝑟 → ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
4935, 48mpd 13 . . . 4 ((𝑥Q𝑥 ∈ (1st𝐴)) → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
5049rexlimiva 2643 . . 3 (∃𝑥Q 𝑥 ∈ (1st𝐴) → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
511, 26, 503syl 17 . 2 (𝐴P → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
5225, 51jca 306 1 (𝐴P → (∃𝑞Q 𝑞 ∈ (1st𝐵) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wex 1538  wcel 2200  {cab 2215  wrex 2509  cop 3669   class class class wbr 4082  cfv 5314  (class class class)co 5994  1st c1st 6274  2nd c2nd 6275  Qcnq 7455  1Qc1q 7456   +Q cplq 7457  *Qcrq 7459   <Q cltq 7460  Pcnp 7466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-1o 6552  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-pli 7480  df-mi 7481  df-lti 7482  df-plpq 7519  df-mpq 7520  df-enq 7522  df-nqqs 7523  df-plqqs 7524  df-mqqs 7525  df-1nqqs 7526  df-rq 7527  df-ltnqqs 7528  df-inp 7641
This theorem is referenced by:  recexprlempr  7807
  Copyright terms: Public domain W3C validator