Proof of Theorem recexprlemm
Step | Hyp | Ref
| Expression |
1 | | prop 7437 |
. . 3
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
2 | | prmu 7440 |
. . 3
⊢
(〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P →
∃𝑥 ∈
Q 𝑥 ∈
(2nd ‘𝐴)) |
3 | | recclnq 7354 |
. . . . . . 7
⊢ (𝑥 ∈ Q →
(*Q‘𝑥) ∈ Q) |
4 | | nsmallnqq 7374 |
. . . . . . 7
⊢
((*Q‘𝑥) ∈ Q → ∃𝑞 ∈ Q 𝑞 <Q
(*Q‘𝑥)) |
5 | 3, 4 | syl 14 |
. . . . . 6
⊢ (𝑥 ∈ Q →
∃𝑞 ∈
Q 𝑞
<Q (*Q‘𝑥)) |
6 | 5 | adantr 274 |
. . . . 5
⊢ ((𝑥 ∈ Q ∧
𝑥 ∈ (2nd
‘𝐴)) →
∃𝑞 ∈
Q 𝑞
<Q (*Q‘𝑥)) |
7 | | recrecnq 7356 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ Q →
(*Q‘(*Q‘𝑥)) = 𝑥) |
8 | 7 | eleq1d 2239 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ Q →
((*Q‘(*Q‘𝑥)) ∈ (2nd
‘𝐴) ↔ 𝑥 ∈ (2nd
‘𝐴))) |
9 | 8 | anbi2d 461 |
. . . . . . . . . 10
⊢ (𝑥 ∈ Q →
((𝑞
<Q (*Q‘𝑥) ∧
(*Q‘(*Q‘𝑥)) ∈ (2nd
‘𝐴)) ↔ (𝑞 <Q
(*Q‘𝑥) ∧ 𝑥 ∈ (2nd ‘𝐴)))) |
10 | | breq2 3993 |
. . . . . . . . . . . . 13
⊢ (𝑦 =
(*Q‘𝑥) → (𝑞 <Q 𝑦 ↔ 𝑞 <Q
(*Q‘𝑥))) |
11 | | fveq2 5496 |
. . . . . . . . . . . . . 14
⊢ (𝑦 =
(*Q‘𝑥) →
(*Q‘𝑦) =
(*Q‘(*Q‘𝑥))) |
12 | 11 | eleq1d 2239 |
. . . . . . . . . . . . 13
⊢ (𝑦 =
(*Q‘𝑥) →
((*Q‘𝑦) ∈ (2nd ‘𝐴) ↔
(*Q‘(*Q‘𝑥)) ∈ (2nd
‘𝐴))) |
13 | 10, 12 | anbi12d 470 |
. . . . . . . . . . . 12
⊢ (𝑦 =
(*Q‘𝑥) → ((𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ↔ (𝑞 <Q
(*Q‘𝑥) ∧
(*Q‘(*Q‘𝑥)) ∈ (2nd
‘𝐴)))) |
14 | 13 | spcegv 2818 |
. . . . . . . . . . 11
⊢
((*Q‘𝑥) ∈ Q → ((𝑞 <Q
(*Q‘𝑥) ∧
(*Q‘(*Q‘𝑥)) ∈ (2nd
‘𝐴)) →
∃𝑦(𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
15 | 3, 14 | syl 14 |
. . . . . . . . . 10
⊢ (𝑥 ∈ Q →
((𝑞
<Q (*Q‘𝑥) ∧
(*Q‘(*Q‘𝑥)) ∈ (2nd
‘𝐴)) →
∃𝑦(𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
16 | 9, 15 | sylbird 169 |
. . . . . . . . 9
⊢ (𝑥 ∈ Q →
((𝑞
<Q (*Q‘𝑥) ∧ 𝑥 ∈ (2nd ‘𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
17 | | recexpr.1 |
. . . . . . . . . 10
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 |
18 | 17 | recexprlemell 7584 |
. . . . . . . . 9
⊢ (𝑞 ∈ (1st
‘𝐵) ↔
∃𝑦(𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))) |
19 | 16, 18 | syl6ibr 161 |
. . . . . . . 8
⊢ (𝑥 ∈ Q →
((𝑞
<Q (*Q‘𝑥) ∧ 𝑥 ∈ (2nd ‘𝐴)) → 𝑞 ∈ (1st ‘𝐵))) |
20 | 19 | expcomd 1434 |
. . . . . . 7
⊢ (𝑥 ∈ Q →
(𝑥 ∈ (2nd
‘𝐴) → (𝑞 <Q
(*Q‘𝑥) → 𝑞 ∈ (1st ‘𝐵)))) |
21 | 20 | imp 123 |
. . . . . 6
⊢ ((𝑥 ∈ Q ∧
𝑥 ∈ (2nd
‘𝐴)) → (𝑞 <Q
(*Q‘𝑥) → 𝑞 ∈ (1st ‘𝐵))) |
22 | 21 | reximdv 2571 |
. . . . 5
⊢ ((𝑥 ∈ Q ∧
𝑥 ∈ (2nd
‘𝐴)) →
(∃𝑞 ∈
Q 𝑞
<Q (*Q‘𝑥) → ∃𝑞 ∈ Q 𝑞 ∈ (1st
‘𝐵))) |
23 | 6, 22 | mpd 13 |
. . . 4
⊢ ((𝑥 ∈ Q ∧
𝑥 ∈ (2nd
‘𝐴)) →
∃𝑞 ∈
Q 𝑞 ∈
(1st ‘𝐵)) |
24 | 23 | rexlimiva 2582 |
. . 3
⊢
(∃𝑥 ∈
Q 𝑥 ∈
(2nd ‘𝐴)
→ ∃𝑞 ∈
Q 𝑞 ∈
(1st ‘𝐵)) |
25 | 1, 2, 24 | 3syl 17 |
. 2
⊢ (𝐴 ∈ P →
∃𝑞 ∈
Q 𝑞 ∈
(1st ‘𝐵)) |
26 | | prml 7439 |
. . 3
⊢
(〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P →
∃𝑥 ∈
Q 𝑥 ∈
(1st ‘𝐴)) |
27 | | 1nq 7328 |
. . . . . . . 8
⊢
1Q ∈ Q |
28 | | addclnq 7337 |
. . . . . . . 8
⊢
(((*Q‘𝑥) ∈ Q ∧
1Q ∈ Q) →
((*Q‘𝑥) +Q
1Q) ∈ Q) |
29 | 3, 27, 28 | sylancl 411 |
. . . . . . 7
⊢ (𝑥 ∈ Q →
((*Q‘𝑥) +Q
1Q) ∈ Q) |
30 | | ltaddnq 7369 |
. . . . . . . 8
⊢
(((*Q‘𝑥) ∈ Q ∧
1Q ∈ Q) →
(*Q‘𝑥) <Q
((*Q‘𝑥) +Q
1Q)) |
31 | 3, 27, 30 | sylancl 411 |
. . . . . . 7
⊢ (𝑥 ∈ Q →
(*Q‘𝑥) <Q
((*Q‘𝑥) +Q
1Q)) |
32 | | breq2 3993 |
. . . . . . . 8
⊢ (𝑟 =
((*Q‘𝑥) +Q
1Q) → ((*Q‘𝑥) <Q
𝑟 ↔
(*Q‘𝑥) <Q
((*Q‘𝑥) +Q
1Q))) |
33 | 32 | rspcev 2834 |
. . . . . . 7
⊢
((((*Q‘𝑥) +Q
1Q) ∈ Q ∧
(*Q‘𝑥) <Q
((*Q‘𝑥) +Q
1Q)) → ∃𝑟 ∈ Q
(*Q‘𝑥) <Q 𝑟) |
34 | 29, 31, 33 | syl2anc 409 |
. . . . . 6
⊢ (𝑥 ∈ Q →
∃𝑟 ∈
Q (*Q‘𝑥) <Q 𝑟) |
35 | 34 | adantr 274 |
. . . . 5
⊢ ((𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴)) →
∃𝑟 ∈
Q (*Q‘𝑥) <Q 𝑟) |
36 | 7 | eleq1d 2239 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ Q →
((*Q‘(*Q‘𝑥)) ∈ (1st
‘𝐴) ↔ 𝑥 ∈ (1st
‘𝐴))) |
37 | 36 | anbi2d 461 |
. . . . . . . . . 10
⊢ (𝑥 ∈ Q →
(((*Q‘𝑥) <Q 𝑟 ∧
(*Q‘(*Q‘𝑥)) ∈ (1st
‘𝐴)) ↔
((*Q‘𝑥) <Q 𝑟 ∧ 𝑥 ∈ (1st ‘𝐴)))) |
38 | | breq1 3992 |
. . . . . . . . . . . . 13
⊢ (𝑦 =
(*Q‘𝑥) → (𝑦 <Q 𝑟 ↔
(*Q‘𝑥) <Q 𝑟)) |
39 | 11 | eleq1d 2239 |
. . . . . . . . . . . . 13
⊢ (𝑦 =
(*Q‘𝑥) →
((*Q‘𝑦) ∈ (1st ‘𝐴) ↔
(*Q‘(*Q‘𝑥)) ∈ (1st
‘𝐴))) |
40 | 38, 39 | anbi12d 470 |
. . . . . . . . . . . 12
⊢ (𝑦 =
(*Q‘𝑥) → ((𝑦 <Q 𝑟 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)) ↔
((*Q‘𝑥) <Q 𝑟 ∧
(*Q‘(*Q‘𝑥)) ∈ (1st
‘𝐴)))) |
41 | 40 | spcegv 2818 |
. . . . . . . . . . 11
⊢
((*Q‘𝑥) ∈ Q →
(((*Q‘𝑥) <Q 𝑟 ∧
(*Q‘(*Q‘𝑥)) ∈ (1st
‘𝐴)) →
∃𝑦(𝑦 <Q 𝑟 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)))) |
42 | 3, 41 | syl 14 |
. . . . . . . . . 10
⊢ (𝑥 ∈ Q →
(((*Q‘𝑥) <Q 𝑟 ∧
(*Q‘(*Q‘𝑥)) ∈ (1st
‘𝐴)) →
∃𝑦(𝑦 <Q 𝑟 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)))) |
43 | 37, 42 | sylbird 169 |
. . . . . . . . 9
⊢ (𝑥 ∈ Q →
(((*Q‘𝑥) <Q 𝑟 ∧ 𝑥 ∈ (1st ‘𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)))) |
44 | 17 | recexprlemelu 7585 |
. . . . . . . . 9
⊢ (𝑟 ∈ (2nd
‘𝐵) ↔
∃𝑦(𝑦 <Q 𝑟 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))) |
45 | 43, 44 | syl6ibr 161 |
. . . . . . . 8
⊢ (𝑥 ∈ Q →
(((*Q‘𝑥) <Q 𝑟 ∧ 𝑥 ∈ (1st ‘𝐴)) → 𝑟 ∈ (2nd ‘𝐵))) |
46 | 45 | expcomd 1434 |
. . . . . . 7
⊢ (𝑥 ∈ Q →
(𝑥 ∈ (1st
‘𝐴) →
((*Q‘𝑥) <Q 𝑟 → 𝑟 ∈ (2nd ‘𝐵)))) |
47 | 46 | imp 123 |
. . . . . 6
⊢ ((𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴)) →
((*Q‘𝑥) <Q 𝑟 → 𝑟 ∈ (2nd ‘𝐵))) |
48 | 47 | reximdv 2571 |
. . . . 5
⊢ ((𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴)) →
(∃𝑟 ∈
Q (*Q‘𝑥) <Q 𝑟 → ∃𝑟 ∈ Q 𝑟 ∈ (2nd
‘𝐵))) |
49 | 35, 48 | mpd 13 |
. . . 4
⊢ ((𝑥 ∈ Q ∧
𝑥 ∈ (1st
‘𝐴)) →
∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐵)) |
50 | 49 | rexlimiva 2582 |
. . 3
⊢
(∃𝑥 ∈
Q 𝑥 ∈
(1st ‘𝐴)
→ ∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐵)) |
51 | 1, 26, 50 | 3syl 17 |
. 2
⊢ (𝐴 ∈ P →
∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐵)) |
52 | 25, 51 | jca 304 |
1
⊢ (𝐴 ∈ P →
(∃𝑞 ∈
Q 𝑞 ∈
(1st ‘𝐵)
∧ ∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐵))) |