ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funresdfunsndc GIF version

Theorem funresdfunsndc 6497
Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself, where equality is decidable. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon, 30-Jan-2023.)
Assertion
Ref Expression
funresdfunsndc ((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = 𝐹)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦

Proof of Theorem funresdfunsndc
StepHypRef Expression
1 funrel 5225 . . . . 5 (Fun 𝐹 → Rel 𝐹)
2 resdmdfsn 4943 . . . . 5 (Rel 𝐹 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋})))
31, 2syl 14 . . . 4 (Fun 𝐹 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋})))
433ad2ant2 1019 . . 3 ((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹𝑋 ∈ dom 𝐹) → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋})))
54uneq1d 3286 . 2 ((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
6 funfn 5238 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
7 fnsnsplitdc 6496 . . 3 ((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦𝐹 Fn dom 𝐹𝑋 ∈ dom 𝐹) → 𝐹 = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
86, 7syl3an2b 1275 . 2 ((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹𝑋 ∈ dom 𝐹) → 𝐹 = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
95, 8eqtr4d 2211 1 ((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 834  w3a 978   = wceq 1353  wcel 2146  wral 2453  Vcvv 2735  cdif 3124  cun 3125  {csn 3589  cop 3592  dom cdm 4620  cres 4622  Rel wrel 4625  Fun wfun 5202   Fn wfn 5203  cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216
This theorem is referenced by:  strsetsid  12460
  Copyright terms: Public domain W3C validator