ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funresdfunsndc GIF version

Theorem funresdfunsndc 6573
Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself, where equality is decidable. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon, 30-Jan-2023.)
Assertion
Ref Expression
funresdfunsndc ((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = 𝐹)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦

Proof of Theorem funresdfunsndc
StepHypRef Expression
1 funrel 5276 . . . . 5 (Fun 𝐹 → Rel 𝐹)
2 resdmdfsn 4990 . . . . 5 (Rel 𝐹 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋})))
31, 2syl 14 . . . 4 (Fun 𝐹 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋})))
433ad2ant2 1021 . . 3 ((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹𝑋 ∈ dom 𝐹) → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋})))
54uneq1d 3317 . 2 ((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
6 funfn 5289 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
7 fnsnsplitdc 6572 . . 3 ((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦𝐹 Fn dom 𝐹𝑋 ∈ dom 𝐹) → 𝐹 = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
86, 7syl3an2b 1286 . 2 ((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹𝑋 ∈ dom 𝐹) → 𝐹 = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
95, 8eqtr4d 2232 1 ((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 835  w3a 980   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  cdif 3154  cun 3155  {csn 3623  cop 3626  dom cdm 4664  cres 4666  Rel wrel 4669  Fun wfun 5253   Fn wfn 5254  cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267
This theorem is referenced by:  strsetsid  12736
  Copyright terms: Public domain W3C validator