ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funresdfunsndc GIF version

Theorem funresdfunsndc 6474
Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself, where equality is decidable. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon, 30-Jan-2023.)
Assertion
Ref Expression
funresdfunsndc ((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = 𝐹)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦

Proof of Theorem funresdfunsndc
StepHypRef Expression
1 funrel 5205 . . . . 5 (Fun 𝐹 → Rel 𝐹)
2 resdmdfsn 4927 . . . . 5 (Rel 𝐹 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋})))
31, 2syl 14 . . . 4 (Fun 𝐹 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋})))
433ad2ant2 1009 . . 3 ((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹𝑋 ∈ dom 𝐹) → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋})))
54uneq1d 3275 . 2 ((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
6 funfn 5218 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
7 fnsnsplitdc 6473 . . 3 ((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦𝐹 Fn dom 𝐹𝑋 ∈ dom 𝐹) → 𝐹 = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
86, 7syl3an2b 1265 . 2 ((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹𝑋 ∈ dom 𝐹) → 𝐹 = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
95, 8eqtr4d 2201 1 ((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 824  w3a 968   = wceq 1343  wcel 2136  wral 2444  Vcvv 2726  cdif 3113  cun 3114  {csn 3576  cop 3579  dom cdm 4604  cres 4606  Rel wrel 4609  Fun wfun 5182   Fn wfn 5183  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196
This theorem is referenced by:  strsetsid  12427
  Copyright terms: Public domain W3C validator