Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resunimafz0 | GIF version |
Description: The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.) |
Ref | Expression |
---|---|
resunimafz0.i | ⊢ (𝜑 → Fun 𝐼) |
resunimafz0.f | ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
resunimafz0.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
Ref | Expression |
---|---|
resunimafz0 | ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaundi 5023 | . . . . 5 ⊢ (𝐹 “ ((0..^𝑁) ∪ {𝑁})) = ((𝐹 “ (0..^𝑁)) ∪ (𝐹 “ {𝑁})) | |
2 | resunimafz0.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
3 | elfzonn0 10142 | . . . . . . . . 9 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → 𝑁 ∈ ℕ0) | |
4 | 2, 3 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
5 | elnn0uz 9524 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
6 | 4, 5 | sylib 121 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘0)) |
7 | fzisfzounsn 10192 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘0) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁})) | |
8 | 6, 7 | syl 14 | . . . . . 6 ⊢ (𝜑 → (0...𝑁) = ((0..^𝑁) ∪ {𝑁})) |
9 | 8 | imaeq2d 4953 | . . . . 5 ⊢ (𝜑 → (𝐹 “ (0...𝑁)) = (𝐹 “ ((0..^𝑁) ∪ {𝑁}))) |
10 | resunimafz0.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
11 | 10 | ffnd 5348 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn (0..^(♯‘𝐹))) |
12 | fnsnfv 5555 | . . . . . . 7 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → {(𝐹‘𝑁)} = (𝐹 “ {𝑁})) | |
13 | 11, 2, 12 | syl2anc 409 | . . . . . 6 ⊢ (𝜑 → {(𝐹‘𝑁)} = (𝐹 “ {𝑁})) |
14 | 13 | uneq2d 3281 | . . . . 5 ⊢ (𝜑 → ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)}) = ((𝐹 “ (0..^𝑁)) ∪ (𝐹 “ {𝑁}))) |
15 | 1, 9, 14 | 3eqtr4a 2229 | . . . 4 ⊢ (𝜑 → (𝐹 “ (0...𝑁)) = ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)})) |
16 | 15 | reseq2d 4891 | . . 3 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = (𝐼 ↾ ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)}))) |
17 | resundi 4904 | . . 3 ⊢ (𝐼 ↾ ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)})) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹‘𝑁)})) | |
18 | 16, 17 | eqtrdi 2219 | . 2 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹‘𝑁)}))) |
19 | resunimafz0.i | . . . . 5 ⊢ (𝜑 → Fun 𝐼) | |
20 | funfn 5228 | . . . . 5 ⊢ (Fun 𝐼 ↔ 𝐼 Fn dom 𝐼) | |
21 | 19, 20 | sylib 121 | . . . 4 ⊢ (𝜑 → 𝐼 Fn dom 𝐼) |
22 | 10, 2 | ffvelrnd 5632 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑁) ∈ dom 𝐼) |
23 | fnressn 5682 | . . . 4 ⊢ ((𝐼 Fn dom 𝐼 ∧ (𝐹‘𝑁) ∈ dom 𝐼) → (𝐼 ↾ {(𝐹‘𝑁)}) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) | |
24 | 21, 22, 23 | syl2anc 409 | . . 3 ⊢ (𝜑 → (𝐼 ↾ {(𝐹‘𝑁)}) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
25 | 24 | uneq2d 3281 | . 2 ⊢ (𝜑 → ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹‘𝑁)})) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
26 | 18, 25 | eqtrd 2203 | 1 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ∪ cun 3119 {csn 3583 〈cop 3586 dom cdm 4611 ↾ cres 4613 “ cima 4614 Fun wfun 5192 Fn wfn 5193 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 0cc0 7774 ℕ0cn0 9135 ℤ≥cuz 9487 ...cfz 9965 ..^cfzo 10098 ♯chash 10709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-fzo 10099 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |