![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resunimafz0 | GIF version |
Description: The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.) |
Ref | Expression |
---|---|
resunimafz0.i | ⊢ (𝜑 → Fun 𝐼) |
resunimafz0.f | ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
resunimafz0.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
Ref | Expression |
---|---|
resunimafz0 | ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaundi 5079 | . . . . 5 ⊢ (𝐹 “ ((0..^𝑁) ∪ {𝑁})) = ((𝐹 “ (0..^𝑁)) ∪ (𝐹 “ {𝑁})) | |
2 | resunimafz0.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
3 | elfzonn0 10256 | . . . . . . . . 9 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → 𝑁 ∈ ℕ0) | |
4 | 2, 3 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
5 | elnn0uz 9633 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
6 | 4, 5 | sylib 122 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘0)) |
7 | fzisfzounsn 10306 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘0) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁})) | |
8 | 6, 7 | syl 14 | . . . . . 6 ⊢ (𝜑 → (0...𝑁) = ((0..^𝑁) ∪ {𝑁})) |
9 | 8 | imaeq2d 5006 | . . . . 5 ⊢ (𝜑 → (𝐹 “ (0...𝑁)) = (𝐹 “ ((0..^𝑁) ∪ {𝑁}))) |
10 | resunimafz0.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
11 | 10 | ffnd 5405 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn (0..^(♯‘𝐹))) |
12 | fnsnfv 5617 | . . . . . . 7 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → {(𝐹‘𝑁)} = (𝐹 “ {𝑁})) | |
13 | 11, 2, 12 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → {(𝐹‘𝑁)} = (𝐹 “ {𝑁})) |
14 | 13 | uneq2d 3314 | . . . . 5 ⊢ (𝜑 → ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)}) = ((𝐹 “ (0..^𝑁)) ∪ (𝐹 “ {𝑁}))) |
15 | 1, 9, 14 | 3eqtr4a 2252 | . . . 4 ⊢ (𝜑 → (𝐹 “ (0...𝑁)) = ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)})) |
16 | 15 | reseq2d 4943 | . . 3 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = (𝐼 ↾ ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)}))) |
17 | resundi 4956 | . . 3 ⊢ (𝐼 ↾ ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)})) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹‘𝑁)})) | |
18 | 16, 17 | eqtrdi 2242 | . 2 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹‘𝑁)}))) |
19 | resunimafz0.i | . . . . 5 ⊢ (𝜑 → Fun 𝐼) | |
20 | funfn 5285 | . . . . 5 ⊢ (Fun 𝐼 ↔ 𝐼 Fn dom 𝐼) | |
21 | 19, 20 | sylib 122 | . . . 4 ⊢ (𝜑 → 𝐼 Fn dom 𝐼) |
22 | 10, 2 | ffvelcdmd 5695 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑁) ∈ dom 𝐼) |
23 | fnressn 5745 | . . . 4 ⊢ ((𝐼 Fn dom 𝐼 ∧ (𝐹‘𝑁) ∈ dom 𝐼) → (𝐼 ↾ {(𝐹‘𝑁)}) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) | |
24 | 21, 22, 23 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐼 ↾ {(𝐹‘𝑁)}) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
25 | 24 | uneq2d 3314 | . 2 ⊢ (𝜑 → ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹‘𝑁)})) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
26 | 18, 25 | eqtrd 2226 | 1 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∪ cun 3152 {csn 3619 〈cop 3622 dom cdm 4660 ↾ cres 4662 “ cima 4663 Fun wfun 5249 Fn wfn 5250 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 0cc0 7874 ℕ0cn0 9243 ℤ≥cuz 9595 ...cfz 10077 ..^cfzo 10211 ♯chash 10849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-fz 10078 df-fzo 10212 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |