ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resunimafz0 GIF version

Theorem resunimafz0 10813
Description: The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.)
Hypotheses
Ref Expression
resunimafz0.i (𝜑 → Fun 𝐼)
resunimafz0.f (𝜑𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
resunimafz0.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
Assertion
Ref Expression
resunimafz0 (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}))

Proof of Theorem resunimafz0
StepHypRef Expression
1 imaundi 5043 . . . . 5 (𝐹 “ ((0..^𝑁) ∪ {𝑁})) = ((𝐹 “ (0..^𝑁)) ∪ (𝐹 “ {𝑁}))
2 resunimafz0.n . . . . . . . . 9 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
3 elfzonn0 10188 . . . . . . . . 9 (𝑁 ∈ (0..^(♯‘𝐹)) → 𝑁 ∈ ℕ0)
42, 3syl 14 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
5 elnn0uz 9567 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
64, 5sylib 122 . . . . . . 7 (𝜑𝑁 ∈ (ℤ‘0))
7 fzisfzounsn 10238 . . . . . . 7 (𝑁 ∈ (ℤ‘0) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
86, 7syl 14 . . . . . 6 (𝜑 → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
98imaeq2d 4972 . . . . 5 (𝜑 → (𝐹 “ (0...𝑁)) = (𝐹 “ ((0..^𝑁) ∪ {𝑁})))
10 resunimafz0.f . . . . . . . 8 (𝜑𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
1110ffnd 5368 . . . . . . 7 (𝜑𝐹 Fn (0..^(♯‘𝐹)))
12 fnsnfv 5577 . . . . . . 7 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → {(𝐹𝑁)} = (𝐹 “ {𝑁}))
1311, 2, 12syl2anc 411 . . . . . 6 (𝜑 → {(𝐹𝑁)} = (𝐹 “ {𝑁}))
1413uneq2d 3291 . . . . 5 (𝜑 → ((𝐹 “ (0..^𝑁)) ∪ {(𝐹𝑁)}) = ((𝐹 “ (0..^𝑁)) ∪ (𝐹 “ {𝑁})))
151, 9, 143eqtr4a 2236 . . . 4 (𝜑 → (𝐹 “ (0...𝑁)) = ((𝐹 “ (0..^𝑁)) ∪ {(𝐹𝑁)}))
1615reseq2d 4909 . . 3 (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = (𝐼 ↾ ((𝐹 “ (0..^𝑁)) ∪ {(𝐹𝑁)})))
17 resundi 4922 . . 3 (𝐼 ↾ ((𝐹 “ (0..^𝑁)) ∪ {(𝐹𝑁)})) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹𝑁)}))
1816, 17eqtrdi 2226 . 2 (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹𝑁)})))
19 resunimafz0.i . . . . 5 (𝜑 → Fun 𝐼)
20 funfn 5248 . . . . 5 (Fun 𝐼𝐼 Fn dom 𝐼)
2119, 20sylib 122 . . . 4 (𝜑𝐼 Fn dom 𝐼)
2210, 2ffvelcdmd 5654 . . . 4 (𝜑 → (𝐹𝑁) ∈ dom 𝐼)
23 fnressn 5704 . . . 4 ((𝐼 Fn dom 𝐼 ∧ (𝐹𝑁) ∈ dom 𝐼) → (𝐼 ↾ {(𝐹𝑁)}) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
2421, 22, 23syl2anc 411 . . 3 (𝜑 → (𝐼 ↾ {(𝐹𝑁)}) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
2524uneq2d 3291 . 2 (𝜑 → ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹𝑁)})) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}))
2618, 25eqtrd 2210 1 (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  cun 3129  {csn 3594  cop 3597  dom cdm 4628  cres 4630  cima 4631  Fun wfun 5212   Fn wfn 5213  wf 5214  cfv 5218  (class class class)co 5877  0cc0 7813  0cn0 9178  cuz 9530  ...cfz 10010  ..^cfzo 10144  chash 10757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011  df-fzo 10145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator