ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopfvb GIF version

Theorem funopfvb 5361
Description: Equivalence of function value and ordered pair membership. Theorem 4.3(ii) of [Monk1] p. 42. (Contributed by NM, 26-Jan-1997.)
Assertion
Ref Expression
funopfvb ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))

Proof of Theorem funopfvb
StepHypRef Expression
1 funfn 5058 . 2 (Fun 𝐹𝐹 Fn dom 𝐹)
2 fnopfvb 5359 . 2 ((𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
31, 2sylanb 279 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1290  wcel 1439  cop 3453  dom cdm 4451  Fun wfun 5022   Fn wfn 5023  cfv 5028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-sbc 2842  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-id 4129  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-iota 4993  df-fun 5030  df-fn 5031  df-fv 5036
This theorem is referenced by:  dmfco  5385  funfvop  5425  f1eqcocnv  5584
  Copyright terms: Public domain W3C validator