Step | Hyp | Ref
| Expression |
1 | | dmres 4910 |
. . . . 5
⊢ dom
(𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) |
2 | 1 | imaeq2i 4949 |
. . . 4
⊢ (𝐹 “ dom (𝐹 ↾ 𝐴)) = (𝐹 “ (𝐴 ∩ dom 𝐹)) |
3 | | imadmres 5101 |
. . . 4
⊢ (𝐹 “ dom (𝐹 ↾ 𝐴)) = (𝐹 “ 𝐴) |
4 | 2, 3 | eqtr3i 2193 |
. . 3
⊢ (𝐹 “ (𝐴 ∩ dom 𝐹)) = (𝐹 “ 𝐴) |
5 | 4 | sseq2i 3174 |
. 2
⊢ (𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹)) ↔ 𝐵 ⊆ (𝐹 “ 𝐴)) |
6 | | ssrab2 3232 |
. . . 4
⊢ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹) |
7 | | ssel2 3142 |
. . . . . . . . 9
⊢ ((𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹)) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹))) |
8 | 7 | adantll 473 |
. . . . . . . 8
⊢ (((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹))) |
9 | | fvelima 5546 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹))) → ∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹‘𝑤) = 𝑧) |
10 | 9 | ex 114 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → ∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹‘𝑤) = 𝑧)) |
11 | 10 | adantr 274 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → ∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹‘𝑤) = 𝑧)) |
12 | | eleq1a 2242 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝐵 → ((𝐹‘𝑤) = 𝑧 → (𝐹‘𝑤) ∈ 𝐵)) |
13 | 12 | anim2d 335 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹‘𝑤) = 𝑧) → (𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹‘𝑤) ∈ 𝐵))) |
14 | | fveq2 5494 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑤 → (𝐹‘𝑦) = (𝐹‘𝑤)) |
15 | 14 | eleq1d 2239 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑤 → ((𝐹‘𝑦) ∈ 𝐵 ↔ (𝐹‘𝑤) ∈ 𝐵)) |
16 | 15 | elrab 2886 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} ↔ (𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹‘𝑤) ∈ 𝐵)) |
17 | 13, 16 | syl6ibr 161 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹‘𝑤) = 𝑧) → 𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵})) |
18 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹‘𝑤) = 𝑧) → (𝐹‘𝑤) = 𝑧) |
19 | 18 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹‘𝑤) = 𝑧) → (𝐹‘𝑤) = 𝑧)) |
20 | 17, 19 | jcad 305 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹‘𝑤) = 𝑧) → (𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} ∧ (𝐹‘𝑤) = 𝑧))) |
21 | 20 | reximdv2 2569 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝐵 → (∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹‘𝑤) = 𝑧 → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} (𝐹‘𝑤) = 𝑧)) |
22 | 21 | adantl 275 |
. . . . . . . . . . 11
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ 𝐵) → (∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹‘𝑤) = 𝑧 → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} (𝐹‘𝑤) = 𝑧)) |
23 | | funfn 5226 |
. . . . . . . . . . . . 13
⊢ (Fun
𝐹 ↔ 𝐹 Fn dom 𝐹) |
24 | | inss2 3348 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∩ dom 𝐹) ⊆ dom 𝐹 |
25 | 6, 24 | sstri 3156 |
. . . . . . . . . . . . . 14
⊢ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} ⊆ dom 𝐹 |
26 | | fvelimab 5550 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Fn dom 𝐹 ∧ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} ⊆ dom 𝐹) → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} (𝐹‘𝑤) = 𝑧)) |
27 | 25, 26 | mpan2 423 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn dom 𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} (𝐹‘𝑤) = 𝑧)) |
28 | 23, 27 | sylbi 120 |
. . . . . . . . . . . 12
⊢ (Fun
𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} (𝐹‘𝑤) = 𝑧)) |
29 | 28 | adantr 274 |
. . . . . . . . . . 11
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} (𝐹‘𝑤) = 𝑧)) |
30 | 22, 29 | sylibrd 168 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ 𝐵) → (∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹‘𝑤) = 𝑧 → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}))) |
31 | 11, 30 | syld 45 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}))) |
32 | 31 | adantlr 474 |
. . . . . . . 8
⊢ (((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) ∧ 𝑧 ∈ 𝐵) → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}))) |
33 | 8, 32 | mpd 13 |
. . . . . . 7
⊢ (((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵})) |
34 | 33 | ex 114 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}))) |
35 | | fvelima 5546 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵})) → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} (𝐹‘𝑤) = 𝑧) |
36 | 35 | ex 114 |
. . . . . . . 8
⊢ (Fun
𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}) → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} (𝐹‘𝑤) = 𝑧)) |
37 | | eleq1 2233 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑤) = 𝑧 → ((𝐹‘𝑤) ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) |
38 | 37 | biimpcd 158 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑤) ∈ 𝐵 → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐵)) |
39 | 38 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹‘𝑤) ∈ 𝐵) → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐵)) |
40 | 16, 39 | sylbi 120 |
. . . . . . . . 9
⊢ (𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐵)) |
41 | 40 | rexlimiv 2581 |
. . . . . . . 8
⊢
(∃𝑤 ∈
{𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} (𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐵) |
42 | 36, 41 | syl6 33 |
. . . . . . 7
⊢ (Fun
𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}) → 𝑧 ∈ 𝐵)) |
43 | 42 | adantr 274 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}) → 𝑧 ∈ 𝐵)) |
44 | 34, 43 | impbid 128 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}))) |
45 | 44 | eqrdv 2168 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵})) |
46 | | ssimaex.1 |
. . . . . . 7
⊢ 𝐴 ∈ V |
47 | 46 | inex1 4121 |
. . . . . 6
⊢ (𝐴 ∩ dom 𝐹) ∈ V |
48 | 47 | rabex 4131 |
. . . . 5
⊢ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} ∈ V |
49 | | sseq1 3170 |
. . . . . 6
⊢ (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} → (𝑥 ⊆ (𝐴 ∩ dom 𝐹) ↔ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹))) |
50 | | imaeq2 4947 |
. . . . . . 7
⊢ (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} → (𝐹 “ 𝑥) = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵})) |
51 | 50 | eqeq2d 2182 |
. . . . . 6
⊢ (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} → (𝐵 = (𝐹 “ 𝑥) ↔ 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}))) |
52 | 49, 51 | anbi12d 470 |
. . . . 5
⊢ (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} → ((𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ 𝑥)) ↔ ({𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵})))) |
53 | 48, 52 | spcev 2825 |
. . . 4
⊢ (({𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵})) → ∃𝑥(𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ 𝑥))) |
54 | 6, 45, 53 | sylancr 412 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → ∃𝑥(𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ 𝑥))) |
55 | | inss1 3347 |
. . . . . 6
⊢ (𝐴 ∩ dom 𝐹) ⊆ 𝐴 |
56 | | sstr 3155 |
. . . . . 6
⊢ ((𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ (𝐴 ∩ dom 𝐹) ⊆ 𝐴) → 𝑥 ⊆ 𝐴) |
57 | 55, 56 | mpan2 423 |
. . . . 5
⊢ (𝑥 ⊆ (𝐴 ∩ dom 𝐹) → 𝑥 ⊆ 𝐴) |
58 | 57 | anim1i 338 |
. . . 4
⊢ ((𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ 𝑥)) → (𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))) |
59 | 58 | eximi 1593 |
. . 3
⊢
(∃𝑥(𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ 𝑥)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))) |
60 | 54, 59 | syl 14 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))) |
61 | 5, 60 | sylan2br 286 |
1
⊢ ((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))) |