ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssimaex GIF version

Theorem ssimaex 5349
Description: The existence of a subimage. (Contributed by NM, 8-Apr-2007.)
Hypothesis
Ref Expression
ssimaex.1 𝐴 ∈ V
Assertion
Ref Expression
ssimaex ((Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem ssimaex
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmres 4721 . . . . 5 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
21imaeq2i 4759 . . . 4 (𝐹 “ dom (𝐹𝐴)) = (𝐹 “ (𝐴 ∩ dom 𝐹))
3 imadmres 4910 . . . 4 (𝐹 “ dom (𝐹𝐴)) = (𝐹𝐴)
42, 3eqtr3i 2110 . . 3 (𝐹 “ (𝐴 ∩ dom 𝐹)) = (𝐹𝐴)
54sseq2i 3049 . 2 (𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹)) ↔ 𝐵 ⊆ (𝐹𝐴))
6 ssrab2 3104 . . . 4 {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹)
7 ssel2 3018 . . . . . . . . 9 ((𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹)) ∧ 𝑧𝐵) → 𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)))
87adantll 460 . . . . . . . 8 (((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) ∧ 𝑧𝐵) → 𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)))
9 fvelima 5340 . . . . . . . . . . . 12 ((Fun 𝐹𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹))) → ∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧)
109ex 113 . . . . . . . . . . 11 (Fun 𝐹 → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → ∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧))
1110adantr 270 . . . . . . . . . 10 ((Fun 𝐹𝑧𝐵) → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → ∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧))
12 eleq1a 2159 . . . . . . . . . . . . . . . 16 (𝑧𝐵 → ((𝐹𝑤) = 𝑧 → (𝐹𝑤) ∈ 𝐵))
1312anim2d 330 . . . . . . . . . . . . . . 15 (𝑧𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → (𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) ∈ 𝐵)))
14 fveq2 5289 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑤 → (𝐹𝑦) = (𝐹𝑤))
1514eleq1d 2156 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → ((𝐹𝑦) ∈ 𝐵 ↔ (𝐹𝑤) ∈ 𝐵))
1615elrab 2769 . . . . . . . . . . . . . . 15 (𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ↔ (𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) ∈ 𝐵))
1713, 16syl6ibr 160 . . . . . . . . . . . . . 14 (𝑧𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → 𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))
18 simpr 108 . . . . . . . . . . . . . . 15 ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → (𝐹𝑤) = 𝑧)
1918a1i 9 . . . . . . . . . . . . . 14 (𝑧𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → (𝐹𝑤) = 𝑧))
2017, 19jcad 301 . . . . . . . . . . . . 13 (𝑧𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) = 𝑧) → (𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ∧ (𝐹𝑤) = 𝑧)))
2120reximdv2 2472 . . . . . . . . . . . 12 (𝑧𝐵 → (∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧 → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
2221adantl 271 . . . . . . . . . . 11 ((Fun 𝐹𝑧𝐵) → (∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧 → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
23 funfn 5031 . . . . . . . . . . . . 13 (Fun 𝐹𝐹 Fn dom 𝐹)
24 inss2 3219 . . . . . . . . . . . . . . 15 (𝐴 ∩ dom 𝐹) ⊆ dom 𝐹
256, 24sstri 3032 . . . . . . . . . . . . . 14 {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ dom 𝐹
26 fvelimab 5344 . . . . . . . . . . . . . 14 ((𝐹 Fn dom 𝐹 ∧ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ dom 𝐹) → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
2725, 26mpan2 416 . . . . . . . . . . . . 13 (𝐹 Fn dom 𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
2823, 27sylbi 119 . . . . . . . . . . . 12 (Fun 𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
2928adantr 270 . . . . . . . . . . 11 ((Fun 𝐹𝑧𝐵) → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
3022, 29sylibrd 167 . . . . . . . . . 10 ((Fun 𝐹𝑧𝐵) → (∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹𝑤) = 𝑧𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
3111, 30syld 44 . . . . . . . . 9 ((Fun 𝐹𝑧𝐵) → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
3231adantlr 461 . . . . . . . 8 (((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) ∧ 𝑧𝐵) → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
338, 32mpd 13 . . . . . . 7 (((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) ∧ 𝑧𝐵) → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))
3433ex 113 . . . . . 6 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → (𝑧𝐵𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
35 fvelima 5340 . . . . . . . . 9 ((Fun 𝐹𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})) → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧)
3635ex 113 . . . . . . . 8 (Fun 𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧))
37 eleq1 2150 . . . . . . . . . . . 12 ((𝐹𝑤) = 𝑧 → ((𝐹𝑤) ∈ 𝐵𝑧𝐵))
3837biimpcd 157 . . . . . . . . . . 11 ((𝐹𝑤) ∈ 𝐵 → ((𝐹𝑤) = 𝑧𝑧𝐵))
3938adantl 271 . . . . . . . . . 10 ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹𝑤) ∈ 𝐵) → ((𝐹𝑤) = 𝑧𝑧𝐵))
4016, 39sylbi 119 . . . . . . . . 9 (𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → ((𝐹𝑤) = 𝑧𝑧𝐵))
4140rexlimiv 2483 . . . . . . . 8 (∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} (𝐹𝑤) = 𝑧𝑧𝐵)
4236, 41syl6 33 . . . . . . 7 (Fun 𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) → 𝑧𝐵))
4342adantr 270 . . . . . 6 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}) → 𝑧𝐵))
4434, 43impbid 127 . . . . 5 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → (𝑧𝐵𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
4544eqrdv 2086 . . . 4 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))
46 ssimaex.1 . . . . . . 7 𝐴 ∈ V
4746inex1 3965 . . . . . 6 (𝐴 ∩ dom 𝐹) ∈ V
4847rabex 3975 . . . . 5 {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ∈ V
49 sseq1 3045 . . . . . 6 (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → (𝑥 ⊆ (𝐴 ∩ dom 𝐹) ↔ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹)))
50 imaeq2 4757 . . . . . . 7 (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → (𝐹𝑥) = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))
5150eqeq2d 2099 . . . . . 6 (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → (𝐵 = (𝐹𝑥) ↔ 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})))
5249, 51anbi12d 457 . . . . 5 (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} → ((𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)) ↔ ({𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵}))))
5348, 52spcev 2713 . . . 4 (({𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹𝑦) ∈ 𝐵})) → ∃𝑥(𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)))
546, 45, 53sylancr 405 . . 3 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → ∃𝑥(𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)))
55 inss1 3218 . . . . . 6 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
56 sstr 3031 . . . . . 6 ((𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ (𝐴 ∩ dom 𝐹) ⊆ 𝐴) → 𝑥𝐴)
5755, 56mpan2 416 . . . . 5 (𝑥 ⊆ (𝐴 ∩ dom 𝐹) → 𝑥𝐴)
5857anim1i 333 . . . 4 ((𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)) → (𝑥𝐴𝐵 = (𝐹𝑥)))
5958eximi 1536 . . 3 (∃𝑥(𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹𝑥)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
6054, 59syl 14 . 2 ((Fun 𝐹𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
615, 60sylan2br 282 1 ((Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  wex 1426  wcel 1438  wrex 2360  {crab 2363  Vcvv 2619  cin 2996  wss 2997  dom cdm 4428  cres 4430  cima 4431  Fun wfun 4996   Fn wfn 4997  cfv 5002
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2839  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-fv 5010
This theorem is referenced by:  ssimaexg  5350
  Copyright terms: Public domain W3C validator