ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvimacnvi GIF version

Theorem fvimacnvi 5630
Description: A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.)
Assertion
Ref Expression
fvimacnvi ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹𝐴) ∈ 𝐵)

Proof of Theorem fvimacnvi
StepHypRef Expression
1 snssi 3736 . . 3 (𝐴 ∈ (𝐹𝐵) → {𝐴} ⊆ (𝐹𝐵))
2 funimass2 5294 . . 3 ((Fun 𝐹 ∧ {𝐴} ⊆ (𝐹𝐵)) → (𝐹 “ {𝐴}) ⊆ 𝐵)
31, 2sylan2 286 . 2 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹 “ {𝐴}) ⊆ 𝐵)
4 cnvimass 4991 . . . . 5 (𝐹𝐵) ⊆ dom 𝐹
54sseli 3151 . . . 4 (𝐴 ∈ (𝐹𝐵) → 𝐴 ∈ dom 𝐹)
6 funfvex 5532 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ V)
7 snssg 3726 . . . . 5 ((𝐹𝐴) ∈ V → ((𝐹𝐴) ∈ 𝐵 ↔ {(𝐹𝐴)} ⊆ 𝐵))
86, 7syl 14 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵 ↔ {(𝐹𝐴)} ⊆ 𝐵))
95, 8sylan2 286 . . 3 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ((𝐹𝐴) ∈ 𝐵 ↔ {(𝐹𝐴)} ⊆ 𝐵))
10 funfn 5246 . . . . . 6 (Fun 𝐹𝐹 Fn dom 𝐹)
11 fnsnfv 5575 . . . . . 6 ((𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
1210, 11sylanb 284 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
135, 12sylan2 286 . . . 4 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
1413sseq1d 3184 . . 3 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ({(𝐹𝐴)} ⊆ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵))
159, 14bitrd 188 . 2 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ((𝐹𝐴) ∈ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵))
163, 15mpbird 167 1 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹𝐴) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  Vcvv 2737  wss 3129  {csn 3592  ccnv 4625  dom cdm 4626  cima 4629  Fun wfun 5210   Fn wfn 5211  cfv 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-fv 5224
This theorem is referenced by:  fvimacnv  5631  elpreima  5635
  Copyright terms: Public domain W3C validator