| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvimacnvi | GIF version | ||
| Description: A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.) |
| Ref | Expression |
|---|---|
| fvimacnvi | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 3811 | . . 3 ⊢ (𝐴 ∈ (◡𝐹 “ 𝐵) → {𝐴} ⊆ (◡𝐹 “ 𝐵)) | |
| 2 | funimass2 5398 | . . 3 ⊢ ((Fun 𝐹 ∧ {𝐴} ⊆ (◡𝐹 “ 𝐵)) → (𝐹 “ {𝐴}) ⊆ 𝐵) | |
| 3 | 1, 2 | sylan2 286 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹 “ {𝐴}) ⊆ 𝐵) |
| 4 | cnvimass 5090 | . . . . 5 ⊢ (◡𝐹 “ 𝐵) ⊆ dom 𝐹 | |
| 5 | 4 | sseli 3220 | . . . 4 ⊢ (𝐴 ∈ (◡𝐹 “ 𝐵) → 𝐴 ∈ dom 𝐹) |
| 6 | funfvex 5643 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ V) | |
| 7 | snssg 3801 | . . . . 5 ⊢ ((𝐹‘𝐴) ∈ V → ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵)) | |
| 8 | 6, 7 | syl 14 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵)) |
| 9 | 5, 8 | sylan2 286 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵)) |
| 10 | funfn 5347 | . . . . . 6 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 11 | fnsnfv 5692 | . . . . . 6 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) | |
| 12 | 10, 11 | sylanb 284 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
| 13 | 5, 12 | sylan2 286 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
| 14 | 13 | sseq1d 3253 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → ({(𝐹‘𝐴)} ⊆ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵)) |
| 15 | 9, 14 | bitrd 188 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → ((𝐹‘𝐴) ∈ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵)) |
| 16 | 3, 15 | mpbird 167 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 {csn 3666 ◡ccnv 4717 dom cdm 4718 “ cima 4721 Fun wfun 5311 Fn wfn 5312 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 |
| This theorem is referenced by: fvimacnv 5749 elpreima 5753 psrbaglesuppg 14630 |
| Copyright terms: Public domain | W3C validator |