| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvimacnvi | GIF version | ||
| Description: A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.) |
| Ref | Expression |
|---|---|
| fvimacnvi | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 3767 | . . 3 ⊢ (𝐴 ∈ (◡𝐹 “ 𝐵) → {𝐴} ⊆ (◡𝐹 “ 𝐵)) | |
| 2 | funimass2 5337 | . . 3 ⊢ ((Fun 𝐹 ∧ {𝐴} ⊆ (◡𝐹 “ 𝐵)) → (𝐹 “ {𝐴}) ⊆ 𝐵) | |
| 3 | 1, 2 | sylan2 286 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹 “ {𝐴}) ⊆ 𝐵) |
| 4 | cnvimass 5033 | . . . . 5 ⊢ (◡𝐹 “ 𝐵) ⊆ dom 𝐹 | |
| 5 | 4 | sseli 3180 | . . . 4 ⊢ (𝐴 ∈ (◡𝐹 “ 𝐵) → 𝐴 ∈ dom 𝐹) |
| 6 | funfvex 5578 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ V) | |
| 7 | snssg 3757 | . . . . 5 ⊢ ((𝐹‘𝐴) ∈ V → ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵)) | |
| 8 | 6, 7 | syl 14 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵)) |
| 9 | 5, 8 | sylan2 286 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵)) |
| 10 | funfn 5289 | . . . . . 6 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 11 | fnsnfv 5623 | . . . . . 6 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) | |
| 12 | 10, 11 | sylanb 284 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
| 13 | 5, 12 | sylan2 286 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
| 14 | 13 | sseq1d 3213 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → ({(𝐹‘𝐴)} ⊆ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵)) |
| 15 | 9, 14 | bitrd 188 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → ((𝐹‘𝐴) ∈ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵)) |
| 16 | 3, 15 | mpbird 167 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 {csn 3623 ◡ccnv 4663 dom cdm 4664 “ cima 4667 Fun wfun 5253 Fn wfn 5254 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 |
| This theorem is referenced by: fvimacnv 5680 elpreima 5684 psrbaglesuppg 14302 |
| Copyright terms: Public domain | W3C validator |