ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvimacnvi GIF version

Theorem fvimacnvi 5707
Description: A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.)
Assertion
Ref Expression
fvimacnvi ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹𝐴) ∈ 𝐵)

Proof of Theorem fvimacnvi
StepHypRef Expression
1 snssi 3783 . . 3 (𝐴 ∈ (𝐹𝐵) → {𝐴} ⊆ (𝐹𝐵))
2 funimass2 5361 . . 3 ((Fun 𝐹 ∧ {𝐴} ⊆ (𝐹𝐵)) → (𝐹 “ {𝐴}) ⊆ 𝐵)
31, 2sylan2 286 . 2 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹 “ {𝐴}) ⊆ 𝐵)
4 cnvimass 5054 . . . . 5 (𝐹𝐵) ⊆ dom 𝐹
54sseli 3193 . . . 4 (𝐴 ∈ (𝐹𝐵) → 𝐴 ∈ dom 𝐹)
6 funfvex 5606 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ V)
7 snssg 3773 . . . . 5 ((𝐹𝐴) ∈ V → ((𝐹𝐴) ∈ 𝐵 ↔ {(𝐹𝐴)} ⊆ 𝐵))
86, 7syl 14 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵 ↔ {(𝐹𝐴)} ⊆ 𝐵))
95, 8sylan2 286 . . 3 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ((𝐹𝐴) ∈ 𝐵 ↔ {(𝐹𝐴)} ⊆ 𝐵))
10 funfn 5310 . . . . . 6 (Fun 𝐹𝐹 Fn dom 𝐹)
11 fnsnfv 5651 . . . . . 6 ((𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
1210, 11sylanb 284 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
135, 12sylan2 286 . . . 4 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
1413sseq1d 3226 . . 3 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ({(𝐹𝐴)} ⊆ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵))
159, 14bitrd 188 . 2 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ((𝐹𝐴) ∈ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵))
163, 15mpbird 167 1 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹𝐴) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  Vcvv 2773  wss 3170  {csn 3638  ccnv 4682  dom cdm 4683  cima 4686  Fun wfun 5274   Fn wfn 5275  cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288
This theorem is referenced by:  fvimacnv  5708  elpreima  5712  psrbaglesuppg  14509
  Copyright terms: Public domain W3C validator