ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvimacnvi GIF version

Theorem fvimacnvi 5672
Description: A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.)
Assertion
Ref Expression
fvimacnvi ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹𝐴) ∈ 𝐵)

Proof of Theorem fvimacnvi
StepHypRef Expression
1 snssi 3762 . . 3 (𝐴 ∈ (𝐹𝐵) → {𝐴} ⊆ (𝐹𝐵))
2 funimass2 5332 . . 3 ((Fun 𝐹 ∧ {𝐴} ⊆ (𝐹𝐵)) → (𝐹 “ {𝐴}) ⊆ 𝐵)
31, 2sylan2 286 . 2 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹 “ {𝐴}) ⊆ 𝐵)
4 cnvimass 5028 . . . . 5 (𝐹𝐵) ⊆ dom 𝐹
54sseli 3175 . . . 4 (𝐴 ∈ (𝐹𝐵) → 𝐴 ∈ dom 𝐹)
6 funfvex 5571 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ V)
7 snssg 3752 . . . . 5 ((𝐹𝐴) ∈ V → ((𝐹𝐴) ∈ 𝐵 ↔ {(𝐹𝐴)} ⊆ 𝐵))
86, 7syl 14 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵 ↔ {(𝐹𝐴)} ⊆ 𝐵))
95, 8sylan2 286 . . 3 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ((𝐹𝐴) ∈ 𝐵 ↔ {(𝐹𝐴)} ⊆ 𝐵))
10 funfn 5284 . . . . . 6 (Fun 𝐹𝐹 Fn dom 𝐹)
11 fnsnfv 5616 . . . . . 6 ((𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
1210, 11sylanb 284 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
135, 12sylan2 286 . . . 4 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
1413sseq1d 3208 . . 3 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ({(𝐹𝐴)} ⊆ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵))
159, 14bitrd 188 . 2 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ((𝐹𝐴) ∈ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵))
163, 15mpbird 167 1 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹𝐴) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  wss 3153  {csn 3618  ccnv 4658  dom cdm 4659  cima 4662  Fun wfun 5248   Fn wfn 5249  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262
This theorem is referenced by:  fvimacnv  5673  elpreima  5677  psrbaglesuppg  14158
  Copyright terms: Public domain W3C validator